4,129 research outputs found
The Zeeman Effect on the n = 7 -6 and n = 6 -5 lines of H-like B and its Influence on CXRS Measurements in the Alcator C-Mod Tokamak
Hidden Cues in Random Line Stereograms
Successful fusion of random-line stereograms with breaks in the vernier acuity range has been interpreted to suggest that the interpolation process underlying hyperacuity is parallel and preliminary to stereomatching. In this paper (a) we demonstrate with computer experiments that vernier cues are not needed to solve the stereomatching problem posed by these stereograms and (b) we provide psychophysical evidence that human stereopsis probably does not use vernier cues alone to achieve fusion of these random-line stereograms.MIT Artificial Intelligence Laborator
Direct calculation of the hard-sphere crystal/melt interfacial free energy
We present a direct calculation by molecular-dynamics computer simulation of
the crystal/melt interfacial free energy, , for a system of hard
spheres of diameter . The calculation is performed by thermodynamic
integration along a reversible path defined by cleaving, using specially
constructed movable hard-sphere walls, separate bulk crystal and fluid systems,
which are then merged to form an interface. We find the interfacial free energy
to be slightly anisotropic with = 0.62, 0.64 and
0.58 for the (100), (110) and (111) fcc crystal/fluid
interfaces, respectively. These values are consistent with earlier density
functional calculations and recent experiments measuring the crystal nucleation
rates from colloidal fluids of polystyrene spheres that have been interpreted
[Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of
for the hard-sphere system of , slightly lower
than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
The Regularizing Capacity of Metabolic Networks
Despite their topological complexity almost all functional properties of
metabolic networks can be derived from steady-state dynamics. Indeed, many
theoretical investigations (like flux-balance analysis) rely on extracting
function from steady states. This leads to the interesting question, how
metabolic networks avoid complex dynamics and maintain a steady-state behavior.
Here, we expose metabolic network topologies to binary dynamics generated by
simple local rules. We find that the networks' response is highly specific:
Complex dynamics are systematically reduced on metabolic networks compared to
randomized networks with identical degree sequences. Already small topological
modifications substantially enhance the capacity of a network to host complex
dynamic behavior and thus reduce its regularizing potential. This exceptionally
pronounced regularization of dynamics encoded in the topology may explain, why
steady-state behavior is ubiquitous in metabolism.Comment: 6 pages, 4 figure
Weighted-density approximation for general nonuniform fluid mixtures
In order to construct a general density-functional theory for nonuniform
fluid mixtures, we propose an extension to multicomponent systems of the
weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32,
2909 (1985)]. This extension corrects a deficiency in a similar extension
proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that
that functional cannot be applied to the multi-component nonuniform fluid
systems with spatially varying composition, such as solid-fluid interfaces. As
a test of the accuracy of our new functional, we apply it to the calculation of
the freezing phase diagram of a binary hard-sphere fluid, and compare the
results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor
Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test
The Turing Test (TT) checks for human intelligence, rather than any putative
general intelligence. It involves repeated interaction requiring learning in
the form of adaption to the human conversation partner. It is a macro-level
post-hoc test in contrast to the definition of a Turing Machine (TM), which is
a prior micro-level definition. This raises the question of whether learning is
just another computational process, i.e. can be implemented as a TM. Here we
argue that learning or adaption is fundamentally different from computation,
though it does involve processes that can be seen as computations. To
illustrate this difference we compare (a) designing a TM and (b) learning a TM,
defining them for the purpose of the argument. We show that there is a
well-defined sequence of problems which are not effectively designable but are
learnable, in the form of the bounded halting problem. Some characteristics of
human intelligence are reviewed including it's: interactive nature, learning
abilities, imitative tendencies, linguistic ability and context-dependency. A
story that explains some of these is the Social Intelligence Hypothesis. If
this is broadly correct, this points to the necessity of a considerable period
of acculturation (social learning in context) if an artificial intelligence is
to pass the TT. Whilst it is always possible to 'compile' the results of
learning into a TM, this would not be a designed TM and would not be able to
continually adapt (pass future TTs). We conclude three things, namely that: a
purely "designed" TM will never pass the TT; that there is no such thing as a
general intelligence since it necessary involves learning; and that
learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012,
special session on "The Turing Test and Thinking Machines
The Interstellar Rubidium Isotope Ratio toward Rho Ophiuchi A
The isotope ratio, 85Rb/87Rb, places constraints on models of the
nucleosynthesis of heavy elements, but there is no precise determination of the
ratio for material beyond the Solar System. We report the first measurement of
the interstellar Rb isotope ratio. Our measurement of the Rb I line at 7800 A
for the diffuse gas toward rho Oph A yields a value of 1.21 +/- 0.30 (1-sigma)
that differs significantly from the meteoritic value of 2.59. The Rb/K
elemental abundance ratio for the cloud also is lower than that seen in
meteorites. Comparison of the 85Rb/K and 87Rb/K ratios with meteoritic values
indicates that the interstellar 85Rb abundance in this direction is lower than
the Solar System abundance. We attribute the lower abundance to a reduced
contribution from the r-process. Interstellar abundances for Kr, Cd, and Sn are
consistent with much less r-process synthesis for the solar neighborhood
compared to the amount inferred for the Solar System.Comment: 12 pages with 2 figures and 1 table; will appear in ApJ Letter
- …
