43,432 research outputs found
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
New Numerical Results Indicate a Half-Filling SU(4) Kondo State in Carbon Nanotubes
Numerical calculations simulate transport experiments in carbon nanotube
quantum dots (P. Jarillo-Herrero et al., Nature 434, 484 (2005)), where a
strongly enhanced Kondo temperature T_K ~ 8K was associated with the SU(4)
symmetry of the Hamiltonian at quarter-filling for an orbitally
double-degenerate single-occupied electronic shell. Our results clearly suggest
that the Kondo conductance measured for an adjacent shell with T_K ~ 16K,
interpreted as a singlet-triplet Kondo effect, can be associated instead to an
SU(4) Kondo effect at half-filling. Besides presenting spin-charge Kondo
screening similar to the quarter-filling SU(4), the half-filling SU(4) has been
recently associated to very rich physical behavior, including a
non-Fermi-liquid state (M. R. Galpin et al., Phys. Rev. Lett. 94, 186406
(2005)).Comment: 7 pages, 7 figure
Hawksbill (Eretmochelys imbricata) and Green Turtle (Chelonia mydas) Nesting and Beach Selection at Príncipe Island, West Africa
Hawksbills (Eretmochelys imbricata) and green turtles (Chelonia mydas) are the predominant nesting sea turtle species on the beaches of Príncipe Island in the Gulf of Guinea. The extent of nesting has been largely unknown, but such information is essential for management and conservation. Our study is the first island-wide nesting assessment. Results from the survey, conducted from 1 December 2009 to 18 January 2010 (during peak nesting season), show that the potential suitable nesting area (10 km) is scattered around the island’s 50 beaches. Sea turtles nested on 32 of the beaches (hawksbills, 20; green turtles, 28) and used 7.5 km of the suitable nesting habitat (hawksbills, 5.8 km; green turtles, 7.0 km). We estimated that 101 (95% CI = 86–118) clutches were deposited by 17-29 hawksbills and 1088 (95% CI = 999–1245) clutches were deposited by 166-429 green turtles on Príncipe from November 2009 to February 2010 (nesting season). Long-term green turtle nest count data collected from 2007/08 to 2015/16 suggest a positive trend. Analyses of clutch densities in relation to beach characteristics suggested that both species preferred areas where human presence is lower, which coincided with the most sheltered areas. These findings should be used to inform coastal planning and minimize impacts on nesting beaches, as Príncipe is currently targeted for tourism development. Overall, results highlight that Príncipe beaches are very important for the conservation of West African hawksbill and green turtle populations.info:eu-repo/semantics/publishedVersio
Diffractive quarkonium photoproduction in and collisions at the LHC: Predictions of the Resolved Pomeron model for the Run 2 energies
The inclusive diffractive quarkonium photoproduction in and
collisions is investigated considering the Resolved Pomeron Model to describe
the diffractive interaction. We estimate the rapidity and transverse momentum
distributions for the , and photoproduction in
hadronic collisions at the LHC and present our estimate for the total cross
sections at the Run 2 energies. A comparison with the predictions associated to
the exclusive production also is presented. Our results indicate that the
inclusive diffractive production is a factor smaller than the
exclusive one in the kinematical range probed by the LHC.Comment: 9 pages, 5 figures, 1 table. Improved version to be published in
Physical Review D. Numerical bug corrected. All figures were replaced. One
new figure and the NRQCD and CEM predictions for the quarkonium production
have been include
- …
