353 research outputs found

    The type IIb SN 2008ax: the nature of the progenitor

    Full text link
    A source coincident with the position of the type IIb supernova (SN) 2008ax is identified in pre-explosion Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observations in three optical filters. We identify and constrain two possible progenitor systems: (i) a single massive star that lost most of its hydrogen envelope through radiatively driven mass loss processes, prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen envelope, and (ii) an interacting binary in a low mass cluster producing a stripped progenitor. Late time, high resolution observations along with detailed modelling of the SN will be required to reveal the true nature of this progenitor star.Comment: 5 pages, 2 figures, resolution of figure 1 reduced, figure 2 revised, some revision following referee's comments, accepted for publication in MNRAS letter

    An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my

    Get PDF
    We analyze two pre-supernova (SN) and three post-SN high-resolution images of the site of the Type II-Plateau supernova SN 2006my in an effort to either detect the progenitor star or to constrain its properties. Following image registration, we find that an isolated stellar object is not detected at the location of SN 2006my in either of the two pre-SN images. In the first, an I-band image obtained with the Wide-Field and Planetary Camera 2 on board the Hubble Space Telescope, the offset between the SN 2006my location and a detected source ("Source 1") is too large: > 0.08", which corresponds to a confidence level of non-association of 96% from our most liberal estimates of the transformation and measurement uncertainties. In the second, a similarly obtained V-band image, a source is detected ("Source 2") that has overlap with the SN 2006my location but is definitively an extended object. Through artificial star tests carried out on the precise location of SN 2006my in the images, we derive a 3-sigma upper bound on the luminosity of a red supergiant that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10, which translates to an upper bound on such a star's initial mass of 15 M_Sun from the STARS stellar evolutionary models. Although considered unlikely, we can not rule out the possibility that part of the light comprising Source 1, which exhibits a slight extension relative to other point sources in the image, or part of the light contributing to the extended Source 2, may be due to the progenitor of SN 2006my. Only additional, high-resolution observations of the site taken after SN 2006my has faded beyond detection can confirm or reject these possibilities.Comment: Minor text changes from Version 1. Appendix added detailing the determination of confidence level of non-association of point sources in two registered astronomical image

    SN 2007uy - metamorphosis of an aspheric Type Ib explosion

    Full text link
    The supernovae of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the nature of their progenitors and the characteristics of the explosions, investigation of proximate events are necessary. Here we present the results of multi-wavelength observations of Type Ib SN 2007uy in the nearby (\sim 29.5 Mpc) galaxy NGC 2770. Analysis of the photometric observations revealed this explosion as an energetic event with peak absolute R band magnitude 18.5±0.16-18.5\pm0.16, which is about one mag brighter than the mean value (17.6±0.6-17.6\pm0.6) derived for well observed Type Ibc events. The SN is highly extinguished, E(B-V) = 0.63±\pm0.15 mag, mainly due to foreground material present in the host galaxy. From optical light curve modeling we determine that about 0.3 M_{\odot} radioactive 56^{56}Ni is produced and roughly 4.4 M_{\odot} material is ejected during this explosion with liberated energy 15×1051\sim 15\times10^{51} erg, indicating the event to be an energetic one. Through optical spectroscopy, we have noticed a clear aspheric evolution of several line forming regions, but no dependency of asymmetry is seen on the distribution of 56^{56}Ni inside the ejecta. The SN shock interaction with the circumburst material is clearly noticeable in radio follow-up, presenting a Synchrotron Self Absorption (SSA) dominated light curve with a contribution of Free Free Absorption (FFA) during the early phases. Assuming a WR star, with wind velocity \ga 10^3 {\rm km s}^{-1}, as a progenitor, we derive a lower limit to the mass loss rate inferred from the radio data as \dot{M} \ga 2.4\times10^{-5} M_{\odot}, yr1^{-1}, which is consistent with the results obtained for other Type Ibc SNe bright at radio frequencies.Comment: 22 pages, 13 figures, accepted for publication in MNRA

    The first year of SN 2004dj in NGC 2403

    Get PDF
    New BVRI photometry and optical spectroscopy of the Type IIp supernova 2004dj in NGC 2403, obtained during the first year since discovery, are presented. The progenitor cluster, Sandage 96, is also detected on pre-explosion frames. The light curve indicates that the explosion occured about 30 days before discovery, and the plateau phase lasted about +110 \pm 20 days after that. The plateau-phase spectra have been modelled with the SYNOW spectral synthesis code using H, NaI, TiII, ScII, FeII and BaII lines. The SN distance is inferred from the Expanding Photosphere Method and the Standard Candle Method applicable for SNe IIp. They resulted in distances that are consistent with each other as well as earlier Cepheid- and Tully-Fisher distances. The average distance, D = 3.47 \pm 0.29 Mpc is proposed for SN 2004dj and NGC 2403. The nickel mass produced by the explosion is estimated as 0.02 \pm 0.01 M_o. The SED of the progenitor cluster is reanalysed by fitting population synthesis models to our observed BVRI data supplemented by U and JKH magnitudes from the literature. The chi^2-minimization revealed a possible "young" solution with cluster age T_{cl} = 8 Myr, and an "old" solution with T_{cl} = 20 - 30 Myr. The "young" solution would imply a progenitor mass M > 20 M_o, which is higher than the previously detected progenitor masses for Type II SNe.Comment: 19 pages, accepted in MNRA

    Identification of the Red Supergiant Progenitor of Supernova 2005cs: Do the Progenitors of Type II-P Supernovae Have Low Mass?

    Full text link
    The stars that end their lives as supernovae (SNe) have been directly observed in only a handful of cases, due mainly to the extreme difficulty in identifying them in images obtained prior to the SN explosions. Here we report the identification of the progenitor for the recent Type II-plateau (core-collapse) SN 2005cs in pre-explosion archival images of the Whirlpool Galaxy (M51) obtained with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). From high-quality ground-based images of the SN from the Canada-France-Hawaii Telescope, we precisely determine the position of the SN and are able to isolate the SN progenitor to within 0".04 in the HST/ACS optical images. We further pinpoint the SN location to within 0".005 from HST/ACS ultraviolet images of the SN, confirming our progenitor identification. From photometry of the SN progenitor obtained with the pre-SN ACS images, and also limits to its brightness in pre-SN HST/NICMOS images, we infer that the progenitor is a red supergiant star of spectral type K0--M3, with initial mass 7--9 Msun. We also discuss the implications of the SN 2005cs progenitor identification and its mass estimate. There is an emerging trend that the most common Type II-plateau SNe originate from low-mass supergiants 8--15 Msun.Comment: Submitted to ApJ. A high resolution version can be found at http://astron.berkeley.edu/~weidong/sn05cs.p

    Did the progenitor of SN 2011dh have a binary companion?

    Get PDF
    We present late-time Hubble Space Telescope ultraviolet (UV) and optical observations of the site of SN 2011dh in the galaxy M51, ∼1164  days post-explosion. At the supernova (SN) location, we observe a point source that is visible at all wavelengths, which is significantly fainter than the spectral energy distribution (SED) of the yellow supergiant progenitor observed prior to explosion. The previously reported photometry of the progenitor is, therefore, completely unaffected by any sources that may persist at the SN location after explosion. In comparison with the previously reported late-time photometric evolution of SN 2011dh, we find that the light curve has plateaued at all wavelengths. The SED of the late-time source is clearly inconsistent with an SED of stellar origin. Although the SED is bright at UV wavelengths, there is no strong evidence that the late-time luminosity originates solely from a stellar source corresponding to the binary companion, although a partial contribution to the observed UV flux from a companion star cannot be ruled out

    SN 2008in—Bridging the Gap between Normal and Faint Supernovae of Type IIP

    Get PDF
    We present optical photometric and low-resolution spectroscopic observations of the Type II plateau supernova (SN) 2008in, which occurred in the outskirts of the nearly face-on spiral galaxy M61. Photometric data in the X-ray, ultraviolet, and near-infrared bands have been used to characterize this event. The SN field was imaged with the ROTSE-IIIb optical telescope about seven days before the explosion. This allowed us to constrain the epoch of the shock breakout to JD = 2454825.6. The duration of the plateau phase, as derived from the photometric monitoring, was ~98 days. The spectra of SN 2008in show a striking resemblance to those of the archetypal low-luminosity IIP SNe 1997D and 1999br. A comparison of ejecta kinematics of SN 2008in with the hydrodynamical simulations of Type IIP SNe by Dessart et al. indicates that it is a less energetic event (~5 × 10^(50) erg). However, the light curve indicates that the production of radioactive ^(56)Ni is significantly higher than that in the low-luminosity SNe. Adopting an interstellar absorption along the SN direction of AV ~ 0.3 mag and a distance of 13.2 Mpc, we estimated a synthesized ^(56)Ni mass of ~0.015 M_☉. Employing semi-analytical formulae derived by Litvinova and Nadezhin, we derived a pre-SN radius of ~126 R_☉, an explosion energy of ~5.4 × 10^(50) erg, and a total ejected mass of ~16.7 M_☉. The latter indicates that the zero-age main-sequence mass of the progenitor did not exceed 20 M_☉. Considering the above properties of SN 2008in and its occurrence in a region of sub-solar metallicity ([O/H] ~ 8.44 dex), it is unlikely that fall-back of the ejecta onto a newly formed black hole occurred in SN 2008in. We therefore favor a low-energy explosion scenario of a relatively compact, moderate-mass progenitor star that generates a neutron star

    The properties of SN Ib/c locations

    Get PDF
    Aims: To gain better insight on the physics of stripped-envelope core-collapse supernovae through studying their environments. Methods: We obtained low-resolution optical spectroscopy with the New Technology Telescope (+ EFOSC2) at the locations of 20 Type Ib/c supernovae. We measure the flux of emission lines in the stellar-continuum-subtracted spectra from which local metallicities are computed. For the supernova regions we estimate both the mean stellar age, interpreting the stellar absorption with population synthesis models, and the age of the youngest stellar populations using the H-alpha equivalent width as an age indicator. These estimates are compared with the lifetimes of single massive stars. Results: Based on our sample, we detect a tentative indication that Type Ic supernovae might explode in environments that are more metal-rich than those of Type Ib supernovae (average difference of 0.08 dex), but this is not a statistically significant result. The lower limits placed on the ages of the supernova birthplaces are overall young, although there are several cases where these appear older than what is expected for the evolution of single stars more massive than 25-30 M_{sun}. This is only true, however, assuming that the supernova progenitors were born during an instantaneous (not continuous) episode of star formation. Conclusions: These results do not conclusively favor any of the two evolutionary paths (single or binary) leading to stripped supernovae. We do note a fraction of events for which binary evolution is more likely, due to their associated age limits. The fact, however, that the supernova environments contain areas of recent (< 15 Myr) star formation and that the environmental metallicities are, at least, not against the single evolutionary scenario, suggest that this channel is also broadly consistent with the observations.Comment: Matches published version (after proofs

    Galaxy Counterparts of metal-rich Damped Lyman-alpha Absorbers - I: The case of the z=2.35 DLA towards Q2222-0946

    Full text link
    We have initiated a survey using the newly commissioned X-shooter spectrograph to target candidate relatively metal-rich damped Lyman-alpha absorbers (DLAs). The spectral coverage of X-shooter allows us to search for not only Lyman-alpha emission, but also rest-frame optical emission lines. We have chosen DLAs where the strongest rest-frame optical lines ([OII], [OIII], Hbeta and Halpha) fall in the NIR atmospheric transmission bands. In this first paper resulting from the survey, we report on the discovery of the galaxy counterpart of the z_abs = 2.354 DLA towards the z=2.926 quasar Q2222$-0946. This DLA is amongst the most metal-rich z>2 DLAs studied so far at comparable redshifts and there is evidence for substantial depletion of refractory elements onto dust grains. We measure metallicities from ZnII, SiII, NiII, MnII and FeII of -0.46+/-0.07, -0.51+/-0.06, -0.85+/-0.06, -1.23+/-0.06, and -0.99+/-0.06, respectively. The galaxy is detected in the Lyman-alpha, [OIII] lambda4959,5007 Halpha emission lines at an impact parameter of about 0.8 arcsec (6 kpc at z_abs = 2.354). We infer a star-formation rate of 10 M_sun yr^-1, which is a lower limit due to the possibility of slit-loss. Compared to the recently determined Halpha luminosity function for z=2.2 galaxies the DLA-galaxy counterpart has a luminosity of L~0.1L^*_Halpha. The emission-line ratios are 4.0 (Lyalpha/Halpha) and 1.2 ([OIII]/Halpha). The Lyalpha line shows clear evidence for resonant scattering effects, namely an asymmetric, redshifted (relative to the systemic redshift) component and a much weaker blueshifted component. The fact that the blueshifted component is relatively weak indicates the presence of a galactic wind. The properties of the galaxy counterpart of this DLA is consistent with the prediction that metal-rich DLAs are associated with the most luminous of the DLA-galaxy counterparts.Comment: 9 pages, 7 figures. Accepted for publication in MNRA

    Early Ultraviolet, Optical and X-Ray Observations of the Type IIP SN 2005cs in M51 with Swift

    Get PDF
    We report early photospheric-phase observations of the Type IIP Supernova (SN) 2005cs obtained by Swift's Ultraviolet-Optical and X-Ray Telescopes. Observations started within two days of discovery and continued regularly for three weeks. During this time the V-band magnitude remained essentially constant, while the UV was initially bright but steadily faded until below the brightness of an underlying UV-bright HII region. This UV decay is similar to SNe II observed by the International Ultraviolet Explorer. UV grism spectra show the P-Cygni absorption of MgII 2798A, indicating a photospheric origin of the UV flux. Based on non-LTE model atmosphere calculations with the CMFGEN code, we associate the rapid evolution of the UV flux with the cooling of the ejecta, the peak of the spectral energy distribution (SED) shifting from ~700A on June 30th to ~1200A on July 5th. Furthermore, the corresponding recombination of the ejecta, e.g., the transition from FeIII to FeII, induces considerable strengthening of metal line-blanketing at and above the photosphere, blocking more effectively this fading UV flux. SN2005cs was not detected in X-rays, and the upper limit to the X-ray luminosity yields a limit to the mass loss rate of the progenitor of about 10^-5 solar masses per year. Overall, Swift presents a unique opportunity to capture the early and fast evolution of Type II SNe in the UV, providing additional constraints on the reddening, the SED shortward of 4000A, and the ionization state and temperature of the photon-decoupling regions.Comment: 15 pages, 6 figures. Accepted for publication by Astrophysical Journa
    corecore