3,920 research outputs found

    Insertion device for pressure testing

    Get PDF
    Test device which introduces either pressure or vacuum into a test pipe or tube, is insertable into the tested item where it secures itself into position and requires no external support. The unit has an operating range from zero to 25,000 psig and to any vacuum level that available equipment can reach

    Estimates on Green functions of second order differential operators with singular coefficients

    Full text link
    We investigate the Green functions G(x,x^{\prime}) of some second order differential operators on R^{d+1} with singular coefficients depending only on one coordinate x_{0}. We express the Green functions by means of the Brownian motion. Applying probabilistic methods we prove that when x=(0,{\bf x}) and x^{\prime}=(0,{\bf x}^{\prime}) (here x_{0}=0) lie on the singular hyperplanes then G(0,{\bf x};0,{\bf x}^{\prime}) is more regular than the Green function of operators with regular coefficients.Comment: 16 page

    Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system

    Full text link
    The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a TeV gamma ray strikes the atmosphere. This energetic air shower is initiated at an altitude of 10-30 km depending on the energy and the arrival direction of the primary gamma ray. Whether the best image of the shower is obtained by focusing the telescope at infinity and measuring the Cherenkov photon angles or focusing on the central region of the shower is a not obvious question. This is particularly true for large size IACT for which the depth of the field is much smaller. We address this issue in particular with the fifth telescope (CT5) of the High Energy Stereoscopic System (H.E.S.S.); a 28 m dish large size telescope recently entered in operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped with a focus system, its working principle and the expected effect of focusing depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil

    Translation Representations and Scattering By Two Intervals

    Get PDF
    Studying unitary one-parameter groups in Hilbert space (U(t),H), we show that a model for obstacle scattering can be built, up to unitary equivalence, with the use of translation representations for L2-functions in the complement of two finite and disjoint intervals. The model encompasses a family of systems (U (t), H). For each, we obtain a detailed spectral representation, and we compute the scattering operator, and scattering matrix. We illustrate our results in the Lax-Phillips model where (U (t), H) represents an acoustic wave equation in an exterior domain; and in quantum tunneling for dynamics of quantum states

    Characterisation of aged HDPE pipes from drinking water distribution : investigation of crack depth by Nol ring tests under creep loading

    No full text
    International audienceHDPE pipes are used for the transport of drinking water. However, disinfectants in waterseem to have a strong impact on their mechanical behaviour, limiting their lifetime inoperation. Indeed, oxidation occurs when they are in contact with disinfectants leading to theformation of a thin oxidised layer coupled to the cracks initiation of cracks of different lengthsfrom the inner wall surface. An original method is proposed here to characterise the ageingeffect of the pipe mechanical behaviour. Inspired from the ASTM D 2290-04 standard, NolRing tests have been performed under tensile and creep loadings on smooth rings. Aconstitutive equation has been determined from these tests using a finite element (FE)modelling. FE simulations have been performed to study the influence of the thin oxidised PElayer. Precracked specimens with different crack depth ratio have also been modelled. Thecrack depth ratio is an important parameter to quantify pipe ageing

    New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter

    Get PDF
    Recently the PAMELA experiment has released its updated anti-proton flux and anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear excess of cosmic ray anti-protons at high energies, one can extend constraints on the production of anti-protons from dark matter. In this letter, we consider both the cases of dark matter annihilating and decaying into standard model particles that produce significant numbers of anti-protons. We provide two sets of constraints on the annihilation cross-sections/decay lifetimes. In the one set of constraints we ignore any source of anti-protons other than dark matter, which give the highest allowed cross-sections/inverse lifetimes. In the other set we include also anti-protons produced in collisions of cosmic rays with interstellar medium nuclei, getting tighter but more realistic constraints on the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table

    Bounds on the heat kernel of the Schroedinger operator in a random electromagnetic field

    Full text link
    We obtain lower and upper bounds on the heat kernel and Green functions of the Schroedinger operator in a random Gaussian magnetic field and a fixed scalar potential. We apply stochastic Feynman-Kac representation, diamagnetic upper bounds and the Jensen inequality for the lower bound. We show that if the covariance of the electromagnetic (vector) potential is increasing at large distances then the lower bound is decreasing exponentially fast for large distances and a large time.Comment: some technical improvements, new references, to appear in Journ.Phys.

    Micro-Capsules in Shear Flow

    Full text link
    This paper deals with flow-induced shape transitions of elastic capsules. The state of the art concerning both theory and experiments is briefly reviewed starting with dynamically induced small deformation of initially spherical capsules and the formation of wrinkles on polymerized membranes. Initially non-spherical capsules show tumbling and tank-treading motion in shear flow. Theoretical descriptions of the transition between these two types of motion assuming a fixed shape are at variance with the full capsule dynamics obtained numerically. To resolve the discrepancy, we expand the exact equations of motion for small deformations and find that shape changes play a dominant role. We classify the dynamical phase transitions and obtain numerical and analytical results for the phase boundaries as a function of viscosity contrast, shear and elongational flow rate. We conclude with perspectives on timedependent flow, on shear-induced unbinding from surfaces, on the role of thermal fluctuations, and on applying the concepts of stochastic thermodynamics to these systems.Comment: 34 pages, 15 figure

    Dark Matter and LHC: What is the Connection?

    Get PDF
    We review what can (and cannot) be learned if dark matter is detected in one or more experiments, emphasizing the importance of combining LHC data with direct, astrophysical and cosmological probes of dark matter. We briefly review the conventional picture of a thermally produced WIMP relic density and its connection with theories of electroweak symmetry breaking. We then discuss both experimental and theoretical reasons why one might generically expect this picture to fail. If this is the case, we argue that a combined effort bringing together all types of data -- combined with explicitly constructed theoretical models -- will be the only way to achieve a complete understanding of the dark matter in our universe and become confident that any candidate actually provides the relic density.Comment: 25 pages, 2 figures, Invited review for Modern Physics Letters

    Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz

    Get PDF
    We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz / 500 μ\mum and 857 GHz / 350 μ\mum. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg^2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE / HFI relative gains are 1.047 (±\pm 0.0069) and 1.003 (±\pm 0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor (Abridged)Comment: 13 pages, 10 figures; Incorporates revisions in response to referee comments; cross calibration factors unchange
    corecore