1,285 research outputs found
His story/her story: A dialogue about including men and masculinities in the women’s studies curriculum
The article discusses the issue of inclusion of men and masculinities in the Women\u27s Studies curriculum. Women\u27s Studies programs were started to compensate for the male domination in the academics. Women\u27s Studies presented a platform where scholarship for women was produced and taken seriously, female students and faculty could find their say or voice, and theoretical investigations required for the advancement of the aims of the women\u27s movement could take place. If the academy as a whole does not sufficiently integrate Women\u27s Studies into the curriculum, integrating Men\u27s Studies into Women\u27s Studies might end up further marginalizing Women\u27s Studies by decreasing the number of classroom hours students spend engaging women\u27s lives and feminist scholarship. Such an integration would presents an another form of male privilege, with men manipulating their way into the only branch of scholarship that has consistently focused on women. On a ground level, feminist scholars are apprehensive that a move from a Women\u27s Studies program to a Gender Studies program will reduce the political aspect of women\u27s programs
Is Quantum Bit Commitment Really Possible?
We show that all proposed quantum bit commitment schemes are insecure because
the sender, Alice, can almost always cheat successfully by using an
Einstein-Podolsky-Rosen type of attack and delaying her measurement until she
opens her commitment.Comment: Major revisions to include a more extensive introduction and an
example of bit commitment. Overlap with independent work by Mayers
acknowledged. More recent works by Mayers, by Lo and Chau and by Lo are also
noted. Accepted for publication in Phys. Rev. Let
Side-channel-free quantum key distribution
Quantum key distribution (QKD) offers the promise of absolutely secure
communications. However, proofs of absolute security often assume perfect
implementation from theory to experiment. Thus, existing systems may be prone
to insidious side-channel attacks that rely on flaws in experimental
implementation. Here we replace all real channels with virtual channels in a
QKD protocol, making the relevant detectors and settings inside private spaces
inaccessible while simultaneously acting as a Hilbert space filter to eliminate
side-channel attacks. By using a quantum memory we find that we are able to
bound the secret-key rate below by the entanglement-distillation rate computed
over the distributed states.Comment: Considering general quantum systems, we extended QKD to the presence
of an untrusted relay, whose measurement creates secret correlations in
remote stations (achievable rate lower-bounded by the coherent information).
This key ingredient, i.e., the use of a measurement-based untrusted relay,
has been called 'measurement-device independence' in another arXiv submission
(arXiv:1109.1473
Ares I Stage Separation System Design Certification Testing
NASA is committed to the development of a new crew launch vehicle, the Ares I, that can support human missions to low Earth orbit (LEO) and the moon with unprecedented safety and reliability. NASA's Constellation program comprises the Ares I and Ares V launch vehicles, the Orion crew vehicle, and the Altair lunar lander. Based on historical precedent, stage separation is one of the most significant technical and systems engineering challenges that must be addressed in order to achieve this commitment. This paper surveys historical separation system tests that have been completed in order to ensure staging of other launch vehicles. Key separation system design trades evaluated for Ares I include single vs. dual separation plane options, retro-rockets vs. pneumatic gas actuators, small solid motor quantity/placement/timing, and continuous vs. clamshell interstage configuration options. Both subscale and full-scale tests are required to address the prediction of complex dynamic loading scenarios present during staging events. Test objectives such as separation system functionality, and pyroshock and debris field measurements for the full-scale tests are described. Discussion about the test article, support infrastructure and instrumentation are provided
Secure gated detection scheme for quantum cryptography
Several attacks have been proposed on quantum key distribution systems with
gated single-photon detectors. The attacks involve triggering the detectors
outside the center of the detector gate, and/or using bright illumination to
exploit classical photodiode mode of the detectors. Hence a secure detection
scheme requires two features: The detection events must take place in the
middle of the gate, and the detector must be single-photon sensitive. Here we
present a technique called bit-mapped gating, which is an elegant way to force
the detections in the middle of the detector gate by coupling detection time
and quantum bit error rate. We also discuss how to guarantee single-photon
sensitivity by directly measuring detector parameters. Bit-mapped gating also
provides a simple way to measure the detector blinding parameter in security
proofs for quantum key distribution systems with detector efficiency mismatch,
which up until now has remained a theoretical, unmeasurable quantity. Thus if
single-photon sensitivity can be guaranteed within the gates, a detection
scheme with bit-mapped gating satisfies the assumptions of the current security
proofs.Comment: 7 pages, 3 figure
Alternative schemes for measurement-device-independent quantum key distribution
Practical schemes for measurement-device-independent quantum key distribution
using phase and path or time encoding are presented. In addition to immunity to
existing loopholes in detection systems, our setup employs simple encoding and
decoding modules without relying on polarization maintenance or optical
switches. Moreover, by employing a modified sifting technique to handle the
dead-time limitations in single-photon detectors, our scheme can be run with
only two single-photon detectors. With a phase-postselection technique, a
decoy-state variant of our scheme is also proposed, whose key generation rate
scales linearly with the channel transmittance.Comment: 30 pages, 5 figure
General theory for decoy-state quantum key distribution with arbitrary number of intensities
We develop a general theory for quantum key distribution (QKD) in both the
forward error correction and the reverse error correction cases when the QKD
system is equipped with phase-randomized coherent light with arbitrary number
of decoy intensities. For this purpose, generalizing Wang's expansion, we
derive a convex expansion of the phase-randomized coherent state. We also
numerically check that the asymptotic key generation rates are almost saturated
when the number of decoy intensities is three.Comment: This manuscript has been revised extensivel
Secrecy extraction from no-signalling correlations
Quantum cryptography shows that one can guarantee the secrecy of correlation
on the sole basis of the laws of physics, that is without limiting the
computational power of the eavesdropper. The usual security proofs suppose that
the authorized partners, Alice and Bob, have a perfect knowledge and control of
their quantum systems and devices; for instance, they must be sure that the
logical bits have been encoded in true qubits, and not in higher-dimensional
systems. In this paper, we present an approach that circumvents this strong
assumption. We define protocols, both for the case of bits and for generic
-dimensional outcomes, in which the security is guaranteed by the very
structure of the Alice-Bob correlations, under the no-signalling condition. The
idea is that, if the correlations cannot be produced by shared randomness, then
Eve has poor knowledge of Alice's and Bob's symbols. The present study assumes,
on the one hand that the eavesdropper Eve performs only individual attacks
(this is a limitation to be removed in further work), on the other hand that
Eve can distribute any correlation compatible with the no-signalling condition
(in this sense her power is greater than what quantum physics allows). Under
these assumptions, we prove that the protocols defined here allow extracting
secrecy from noisy correlations, when these correlations violate a Bell-type
inequality by a sufficiently large amount. The region, in which secrecy
extraction is possible, extends within the region of correlations achievable by
measurements on entangled quantum states.Comment: 23 pages, 4 figure
Quantum information cannot be split into complementary parts
We prove a new impossibility for quantum information (the no-splitting
theorem): an unknown quantum bit (qubit) cannot be split into two complementary
qubits. This impossibility, together with the no-cloning theorem, demonstrates
that an unknown qubit state is a single entity, which cannot be cloned or
split. This sheds new light on quantum computation and quantum information.Comment: 9 pages, 1 figur
Key distillation from quantum channels using two-way communication protocols
We provide a general formalism to characterize the cryptographic properties
of quantum channels in the realistic scenario where the two honest parties
employ prepare and measure protocols and the known two-way communication
reconciliation techniques. We obtain a necessary and sufficient condition to
distill a secret key using this type of schemes for Pauli qubit channels and
generalized Pauli channels in higher dimension. Our results can be applied to
standard protocols such as BB84 or six-state, giving a critical error rate of
20% and 27.6%, respectively. We explore several possibilities to enlarge these
bounds, without any improvement. These results suggest that there may exist
weakly entangling channels useless for key distribution using prepare and
measure schemes.Comment: 21 page
- …
