4,706 research outputs found
Space shuttle main engine: Interactive design challenges
The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities
Some effects of adverse weather conditions on performance of airplane antiskid braking systems
The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions
Apollo experience report: Certification test program
A review of the Apollo spacecraft certification (qualification) test program is presented. The approach to devising the spectrum of dynamic and climatic environments, the formulation of test durations, and the relative significance of the formal certification test program compared with development testing and acceptance testing are reviewed. Management controls for the formulation of test requirements, test techniques, data review, and acceptance of test results are considered. Significant experience gained from the Apollo spacecraft certification test program which may be applicable to future manned spacecraft is presented
Design and analysis issues of integrated control systems for high-speed civil transports
A study was conducted to identify, rank, and define development plans for the critical guidance and control design and analysis issues as related to economically viable and environmentally acceptable high-speed civil transport. The issues were identified in a multistep process. First, pertinent literature on supersonic cruise aircraft was reviewed, and experts were consulted to establish the fundamental characteristics and problems inherent to supersonic cruise aircraft. Next, the advanced technologies and strategies being pursued for the high-speed civil transport were considered to determine any additional unique control problems the transport may have. Finally, existing technologies and methods were examined to determine their capabilities for the design and analysis of high-speed civil transport control systems and to identify the shortcomings and issues. Three priority levels - mandatory, highly beneficial, and desirable - were established. Within each of these levels, the issues were further ranked. Technology development plans for each issue were defined. Each plan contains a task breakdown and schedule
How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers
Polarization in American politics has been extensively documented and
analyzed for decades, and the phenomenon became all the more apparent during
the 2016 presidential election, where Trump and Clinton depicted two radically
different pictures of America. Inspired by this gaping polarization and the
extensive utilization of Twitter during the 2016 presidential campaign, in this
paper we take the first step in measuring polarization in social media and we
attempt to predict individuals' Twitter following behavior through analyzing
ones' everyday tweets, profile images and posted pictures. As such, we treat
polarization as a classification problem and study to what extent Trump
followers and Clinton followers on Twitter can be distinguished, which in turn
serves as a metric of polarization in general. We apply LSTM to processing
tweet features and we extract visual features using the VGG neural network.
Integrating these two sets of features boosts the overall performance. We are
able to achieve an accuracy of 69%, suggesting that the high degree of
polarization recorded in the literature has started to manifest itself in
social media as well.Comment: 16 pages, SocInfo 2017, 9th International Conference on Social
Informatic
Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2
Results of tests conducted to demonstrate that composite structures save weight, possess long term durability, and can be fabricated at costs competitive with conventional metal structures are presented with focus on the use of graphite-epoxy in the design of a stabilizer for the Boeing 737 aircraft. Component definition, materials evaluation, material design properties, and structural elements tests are discussed. Fabrication development, as well as structural repair and inspection are also examined
Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary
The horizontal stabilizer of the 737 transport was redesigned. Five shipsets were fabricated using composite materials. Weight reduction greater than the 20% goal was achieved. Parts and assemblies were readily produced on production-type tooling. Quality assurance methods were demonstrated. Repair methods were developed and demonstrated. Strength and stiffness analytical methods were substantiated by comparison with test results. Cost data was accumulated in a semiproduction environment. FAA certification was obtained
Can weightbearing computed tomography scans be used to diagnose subtalar joint instability? : a cadaver study
Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2
The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed
The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?
We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the
far-infrared region using Migdal-Eliashberg theory and found it inconsistent
with standard electron-phonon coupling: Whereas the superconducting state data
could be explained using moderate coupling, \lambda=0.7, the normal state
properties indicate \lambda \le 0.2. We have found that such behaviour could be
understood using a simple model consisting of weak standard electron-phonon
coupling plus weak coupling to an unspecified high energy excitation near 0.4
eV. This model is found to be in general agreement with the reflectivity data,
except for the predicted superconducting gap size. The additional high energy
excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is
not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys.
Rev.
- …
