7,027 research outputs found
Investigation of a 2-Colour Undulator FEL Using Puffin
Initial studies of a 2-colour FEL amplifier using one monoenergetic electron
beam are presented. The interaction is modelled using the unaveraged, broadband
FEL code Puffin. A series of undulator modules are tuned to generate two
resonant frequencies along the FEL interaction and a self-consistent 2-colour
FEL interaction at widely spaced non-harmonic wavelengths at 1nm and 2.4nm is
demonstrated.Comment: Submitted to The 35th International Free-Electron Laser Conference,
Manhattan, New York (2013
Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-Darkening Directly from Model Stellar Atmospheres
The transit method, employed by MOST, \emph{Kepler}, and various ground-based
surveys has enabled the characterization of extrasolar planets to unprecedented
precision. These results are precise enough to begin to measure planet
atmosphere composition, planetary oblateness, star spots, and other phenomena
at the level of a few hundred parts-per-million. However, these results depend
on our understanding of stellar limb darkening, that is, the intensity
distribution across the stellar disk that is sequentially blocked as the planet
transits. Typically, stellar limb darkening is assumed to be a simple
parameterization with two coefficients that are derived from stellar atmosphere
models or fit directly. In this work, we revisit this assumption and compute
synthetic planetary transit light curves directly from model stellar atmosphere
center-to-limb intensity variations (CLIV) using the plane-parallel
\textsc{Atlas} and spherically symmetric \textsc{SAtlas} codes. We compare
these light curves to those constructed using best-fit limb-darkening
parameterizations. We find that adopting parametric stellar limb-darkening laws
lead to systematic differences from the more geometrically realistic model
stellar atmosphere CLIV of about 50 -- 100 ppm at the transit center and up to
300 ppm at ingress/egress. While these errors are small they are systematic,
and appear to limit the precision necessary to measure secondary effects. Our
results may also have a significant impact on transit spectra.Comment: 12 pages, 14 figures, accepted for publication in ApJ after revision
Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser
We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only
Four wave mixing with self-phase matching due to collective atomic recoil
We describe a method for non-degenerate four-wave mixing in a cold sample of
4-level atoms. An integral part of the four-wave mixing process is a
collective instability which spontaneously generates a periodic density
modulation in the cold atomic sample with a period equal to half of the
wavelength of the generated high-frequency optical field. Due to the generation
of this density modulation, phase-matching between the pump and scattered
fields is not a necessary initial condition for this wave-mixing process to
occur, rather the density modulation acts to "self phase-match" the fields
during the course of the wave-mixing process. We describe a one-dimensional
model of this process, and suggest a proof-of-principle experiment which would
involve pumping a sample of cold Cs atoms with three infra-red pump fields to
produce blue light.Comment: to appear in Physical Review Letter
Freezing line of the Lennard-Jones fluid: a Phase Switch Monte Carlo study
We report a Phase Switch Monte Carlo (PSMC) method study of the freezing line
of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the
original application of the method to hard sphere freezing, and builds on a
previous PSMC study of the LJ system by Errington (J. Chem. Phys. {\bf 120},
3130 (2004)). The latter work is extended by tracing a large section of the
Lennard-Jones freezing curve, the results for which we compare to a previous
Gibbs-Duhem integration study. Additionally we provide new background regarding
the statistical mechanical basis of the PSMC method and extensive
implementation details.Comment: 18 pages, 6 figure
An extended model of the quantum free-electron laser
Previous models of the quantum regime of operation of the Free Electron Laser
(QFEL) have performed an averaging and the application of periodic boundary
conditions to the coupled Maxwell - Schrodinger equations over short, resonant
wavelength intervals of the interaction. Here, an extended, one-dimensional
model of the QFEL interaction is presented in the absence of any such averaging
or application of periodic boundary conditions, the absence of the latter
allowing electron diffusion processes to be modeled throughout the pulse. The
model is used to investigate how both the steady-state (CW) and pulsed regimes
of QFEL operation are affected. In the steady-state regime it is found that the
electrons are confined to evolve as a 2-level system, similar to the previous
QFEL models. In the pulsed regime Coherent Spontaneous Emission (CSE) due to
the shape of the electron pulse current distribution is shown to be present in
the QFEL regime for the first time. However, unlike the classical case, CSE in
the QFEL is damped by the effects of quantum diffusion of the electron
wavefunction. Electron recoil from the QFEL interaction can also cause a
diffusive drift between the recoiled and non-recoiled parts of the electron
pulse wavefunction, effectively removing the recoiled part from the primary
electron-radiation interaction.Comment: Submitted to Optics Expres
Start-to-end modelling of a mode-locked optical klystron free electron laser amplifier
A free electron laser (FEL) in a mode-locked optical klystron (MLOK) configuration is modelled using start-to-end simulations that simulate realistic electron beam acceleration and transport before input into a full three-dimensional FEL simulation code. These simulations demonstrate that the MLOK scheme is compatible with the present generation of radiofrequency accelerator designs. A train of few-optical cycle pulses is predicted with peak powers similar to those of the equivalent conventional FEL amplifier. The role of electron beam energy modulation in these results is explained and the limitations of some simulation codes discussed. It is shown how seeding the FEL interaction using a High Harmonic seed laser can improve the coherence properties of the output
A simple model for the generation of ultra-short radiation pulses
A method for generating a single broadband radiation pulse from a strongly chirped electron pulse is described. The evolution of the chirped electron pulse in an undulator may generate a pulse of coherent spontaneous radiation of shorter duration than the FEL cooperation length. An analytic expression for the emitted radiation pulse is derived and compared with numerical simulation
- …
