7,027 research outputs found

    Investigation of a 2-Colour Undulator FEL Using Puffin

    Get PDF
    Initial studies of a 2-colour FEL amplifier using one monoenergetic electron beam are presented. The interaction is modelled using the unaveraged, broadband FEL code Puffin. A series of undulator modules are tuned to generate two resonant frequencies along the FEL interaction and a self-consistent 2-colour FEL interaction at widely spaced non-harmonic wavelengths at 1nm and 2.4nm is demonstrated.Comment: Submitted to The 35th International Free-Electron Laser Conference, Manhattan, New York (2013

    Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-Darkening Directly from Model Stellar Atmospheres

    Get PDF
    The transit method, employed by MOST, \emph{Kepler}, and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, star spots, and other phenomena at the level of a few hundred parts-per-million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIV) using the plane-parallel \textsc{Atlas} and spherically symmetric \textsc{SAtlas} codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws lead to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50 -- 100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small they are systematic, and appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.Comment: 12 pages, 14 figures, accepted for publication in ApJ after revision

    Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser

    Get PDF
    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only

    Four wave mixing with self-phase matching due to collective atomic recoil

    Get PDF
    We describe a method for non-degenerate four-wave mixing in a cold sample of 4-level atoms. An integral part of the four-wave mixing process is a collective instability which spontaneously generates a periodic density modulation in the cold atomic sample with a period equal to half of the wavelength of the generated high-frequency optical field. Due to the generation of this density modulation, phase-matching between the pump and scattered fields is not a necessary initial condition for this wave-mixing process to occur, rather the density modulation acts to "self phase-match" the fields during the course of the wave-mixing process. We describe a one-dimensional model of this process, and suggest a proof-of-principle experiment which would involve pumping a sample of cold Cs atoms with three infra-red pump fields to produce blue light.Comment: to appear in Physical Review Letter

    Freezing line of the Lennard-Jones fluid: a Phase Switch Monte Carlo study

    Full text link
    We report a Phase Switch Monte Carlo (PSMC) method study of the freezing line of the Lennard-Jones (LJ) fluid. Our work generalizes to soft potentials the original application of the method to hard sphere freezing, and builds on a previous PSMC study of the LJ system by Errington (J. Chem. Phys. {\bf 120}, 3130 (2004)). The latter work is extended by tracing a large section of the Lennard-Jones freezing curve, the results for which we compare to a previous Gibbs-Duhem integration study. Additionally we provide new background regarding the statistical mechanical basis of the PSMC method and extensive implementation details.Comment: 18 pages, 6 figure

    An extended model of the quantum free-electron laser

    Get PDF
    Previous models of the quantum regime of operation of the Free Electron Laser (QFEL) have performed an averaging and the application of periodic boundary conditions to the coupled Maxwell - Schrodinger equations over short, resonant wavelength intervals of the interaction. Here, an extended, one-dimensional model of the QFEL interaction is presented in the absence of any such averaging or application of periodic boundary conditions, the absence of the latter allowing electron diffusion processes to be modeled throughout the pulse. The model is used to investigate how both the steady-state (CW) and pulsed regimes of QFEL operation are affected. In the steady-state regime it is found that the electrons are confined to evolve as a 2-level system, similar to the previous QFEL models. In the pulsed regime Coherent Spontaneous Emission (CSE) due to the shape of the electron pulse current distribution is shown to be present in the QFEL regime for the first time. However, unlike the classical case, CSE in the QFEL is damped by the effects of quantum diffusion of the electron wavefunction. Electron recoil from the QFEL interaction can also cause a diffusive drift between the recoiled and non-recoiled parts of the electron pulse wavefunction, effectively removing the recoiled part from the primary electron-radiation interaction.Comment: Submitted to Optics Expres

    Start-to-end modelling of a mode-locked optical klystron free electron laser amplifier

    Get PDF
    A free electron laser (FEL) in a mode-locked optical klystron (MLOK) configuration is modelled using start-to-end simulations that simulate realistic electron beam acceleration and transport before input into a full three-dimensional FEL simulation code. These simulations demonstrate that the MLOK scheme is compatible with the present generation of radiofrequency accelerator designs. A train of few-optical cycle pulses is predicted with peak powers similar to those of the equivalent conventional FEL amplifier. The role of electron beam energy modulation in these results is explained and the limitations of some simulation codes discussed. It is shown how seeding the FEL interaction using a High Harmonic seed laser can improve the coherence properties of the output

    A simple model for the generation of ultra-short radiation pulses

    Get PDF
    A method for generating a single broadband radiation pulse from a strongly chirped electron pulse is described. The evolution of the chirped electron pulse in an undulator may generate a pulse of coherent spontaneous radiation of shorter duration than the FEL cooperation length. An analytic expression for the emitted radiation pulse is derived and compared with numerical simulation
    corecore