2,752 research outputs found
Ascertaining the Core Collapse Supernova Mechanism: An Emerging Picture?
Here we present the results from two sets of simulations, in two and three
spatial dimensions. In two dimensions, the simulations include multifrequency
flux-limited diffusion neutrino transport in the "ray-by-ray-plus"
approximation, two-dimensional self gravity in the Newtonian limit, and nuclear
burning through a 14-isotope alpha network. The three-dimensional simulations
are model simulations constructed to reflect the post stellar core bounce
conditions during neutrino shock reheating at the onset of explosion. They are
hydrodynamics-only models that focus on critical aspects of the shock stability
and dynamics and their impact on the supernova mechanism and explosion. In two
dimensions, we obtain explosions (although in one case weak) for two
progenitors (11 and 15 Solar mass models). Moreover, in both cases the
explosion is initiated when the inner edge of the oxygen layer accretes through
the shock. Thus, the shock is not revived while in the iron core, as previously
discussed in the literature. The three-dimensional studies of the development
of the stationary accretion shock instability (SASI) demonstrate the
fundamentally new dynamics allowed when simulations are performed in three
spatial dimensions. The predominant l=1 SASI mode gives way to a stable m=1
mode, which in turn has significant ramifications for the distribution of
angular momentum in the region between the shock and proto-neutron star and,
ultimately, for the spin of the remnant neutron star. Moreover, the
three-dimensional simulations make clear, given the increased number of degrees
of freedom, that two-dimensional models are severely limited by artificially
imposed symmetries.Comment: 9 pages, 3 figure
HLA-G: expression in human keratinocytes in vitro and in human skin in vivo
Classical, polymorphic major histocompatibility complex class I molecules are
expressed on most nucleated cells.They present peptides at the cell surface and,
thus, enable the immune system to scan peptides for their antigenicity. The
function of the other, nonclassical class I molecules in man is controversial.
HLA-G which has been shown by transfection experiments to be expressed at the
cell surface, is only transcribed in placental tissue and in the fetal eye.Therefore, a
role of HLA-G in the control of rejection of the allogeneic fetus has been
discussed. We found that HLA-G expression is induced in keratinocytes by
culture in vitro. Three different alternative splicing products of HLA-G can be
detected: a full length transcript, an mRNA lacking exon 3 and a transcript devoid
of exon 3 and 4. Reverse transcription followed by polymerase chain reaction also
revealed the presence of HLA-G mRNA in vivo in biopsies of either diseased or
healthy skin
Time-dependent Schr\"odinger equations having isomorphic symmetry algebras. I. Classes of interrelated equations
In this paper, we focus on a general class of Schr\"odinger equations that
are time-dependent and quadratic in X and P. We transform Schr\"odinger
equations in this class, via a class of time-dependent mass equations, to a
class of solvable time-dependent oscillator equations. This transformation
consists of a unitary transformation and a change in the ``time'' variable. We
derive mathematical constraints forthe transformation and introduce two
examples.Comment: LaTeX, 18 pages, new format, edite
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport
The overwhelming evidence that the core collapse supernova mechanism is
inherently multidimensional, the complexity of the physical processes involved,
and the increasing evidence from simulations that the explosion is marginal
presents great computational challenges for the realistic modeling of this
event, particularly in 3 spatial dimensions. We have developed a code which is
scalable to computations in 3 dimensions which couples PPM Lagrangian with
remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport
[2], with many improvements), and a nuclear network [3]. The neutrino transport
is performed in a ray-by-ray plus approximation wherein all the lateral effects
of neutrinos are included (e.g., pressure, velocity corrections, advection)
except the transport. A moving radial grid option permits the evolution to be
carried out from initial core collapse with only modest demands on the number
of radial zones. The inner part of the core is evolved after collapse along
with the rest of the core and mantle by subcycling the lateral evolution near
the center as demanded by the small Courant times. We present results of 2-D
simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M
progenitor. In each of these simulations we have discovered that once the
oxygen rich material reaches the shock there is a synergistic interplay between
the reduced ram pressure, the energy released by the burning of the shock
heated oxygen rich material, and the neutrino energy deposition which leads to
a revival of the shock and an explosion.Comment: 10 pages, 3 figure
- …
