10,812 research outputs found
Can environmental conditions experienced in early life influence future generations?
The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions
Optimization of resource allocation can explain the temporal dynamics and honesty of sexual signals
In species in which males are free to dynamically alter their allocation to sexual signaling over the breeding season, the optimal investment in signaling should depend on both a male’s state and the level of competition he faces at any given time. We developed a dynamic optimization model within a game‐theoretical framework to explore the resulting signaling dynamics at both individual and population levels and tested two key model predictions with empirical data on three‐spined stickleback (Gasterosteus aculeatus) males subjected to dietary manipulation (carotenoid availability): (1) fish in better nutritional condition should be able to maintain their signal for longer over the breeding season, resulting in an increasingly positive correlation between nutritional status and signal (i.e., increasing signal honesty), and (2) female preference for more ornamented males should thus increase over the breeding season. Both predictions were supported by the experimental data. Our model shows how such patterns can emerge from the optimization of resource allocation to signaling in a competitive situation. The key determinants of the honesty and dynamics of sexual signaling are the condition dependency of male survival, the initial frequency distribution of nutritional condition in the male population, and the cost of signaling
Passive Evolution: Are the Faint Blue Galaxy Counts Produced by a Population of Eternally Young Galaxies?
A constant age population of blue galaxies, postulated in the model of
Gronwall & Koo (1995), seems to provide an attractive explanation of the excess
of very blue galaxies in the deep galaxy counts. Such a population may be
generated by a set of galaxies with cycling star formation rates, or at the
other extreme, be maintained by the continual formation of new galaxies which
fade after they reach the age specified in the Gronwall and Koo model. For both
of these hypotheses, we have calculated the luminosity functions including the
respective selection criteria, the redshift distributions, and the number
counts in the B_J and K bands. We find a substantial excess in the number of
galaxies at low redshift (0 < z < 0.05) over that observed in the CFH redshift
survey (Lilly et al. 1995) and at the faint end of the Las Campanas luminosity
function (Lin et al. 1996). Passive or mild evolution fails to account for the
deep galaxy counts because of the implications for low redshift determinations
of the I-selected redshift distribution and the r-selected luminosity function
in samples where the faded counterparts of the star-forming galaxies would be
detectable.Comment: 11 pages, LaTeX type (aaspp4.sty), 3 Postscript figures, submitted to
ApJ Letter
Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish
In zebrafish, many nerve pathways in both the CNS and periphery are pioneered by a small and relatively simple set of ‘primary’ neurons that arise in the early embryo. We now have used monoclonal antibodies to show that, as they develop, primary neurons of several functional classes express on their surfaces the L2/HNK-1 tetrasaccharide that is associated with a variety of cell surface adhesion molecules. We have studied the early labeling patterns of these neurons, as well as some non-neural cells, and found that the time of onset and intensity of immunolabeling vary specifically according to cell type. The first neuronal expression is by Rohon-Beard and trigeminal ganglion neurons, both of which are primary sensory neurons that mediate touch sensitivity. These cells express the epitope very strongly on their growth cones and axons, permitting study of their development unobscured by labeling in other cells. Both types initiate axogenesis at the same early time, and appear to be the first neurons in the embryo to do so. Their peripheral neurites display similar branching patterns and have similar distinctive growth cone morphologies. Their central axons grow at the same rate along the same longitudinal fiber pathway, but in opposite directions, and where they meet they appear to fasciculate with one another. The similarities suggest that Rohon-Beard and trigeminal ganglion neurons, despite their different positions, share a common program of early development. Immunolabeling is also specifically present on a region of the brain surface where the newly arriving trigeminal sensory axons will enter the brain. Further, the trigeminal expression of the antigen persists in growth cones during the time that they contact an individually identified central target neuron, the Mauthner cell, which also expresses the epitope. These findings provide descriptive evidence for possible roles of L2/HNK-1 immunoreactive molecules in axonal growth and synaptogenesis
Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity
We report the coupling of individual InAs quantum dots (QDs) to an
external-mirror microcavity. The external mirror is bonded to a fiber and
positioned above a semiconductor sample consisting of a QD-containing GaAs
layer on top of a distributed Bragg reflector (DBR). This open cavity can be
rapidly tuned with a piezoelectric actuator without negatively affecting the QD
linewidth. A mirror radius of curvature of 42 microns and a cavity length of 10
microns enable good mode-matching and thus high collection efficiency directly
into the fiber. With an improved finesse this system may enter the strong
coupling regime
Selection of high-z supernovae candidates
Deep, ground based, optical wide-field supernova searches are capable of
detecting a large number of supernovae over a broad redshift range up to z~1.5.
While it is practically unfeasible to obtain spectroscopic redshifts of all the
supernova candidates right after the discovery, we show that the magnitudes and
colors of the host galaxies, as well as the supernovae, can be used to select
high-z supernova candidates, for subsequent spectroscopic and photometric
follow-up.
Using Monte-Carlo simulations we construct criteria for selecting galaxies in
well-defined redshift bands. For example, with a selection criteria using B-R
and R-I colors we are able to pick out potential host galaxies for which z>0.85
with 80% confidence level and with a selection efficiency of 64-86%. The method
was successfully tested using real observations from the HDF.
Similarly, we show that that the magnitude and colors of the supernova
discovery data can be used to constrain the redshift. With a set of cuts based
on V-R and R-I in a search to m_I~25, supernovae at z~1 can be selected in a
redshift interval sigma_z <0.15.Comment: 33 pages, 13 figures, accepted for publication in PASP (March 2002
issue
A ring galaxy at z=1 lensed by the cluster Abell 370
We present a study of a very peculiar object found in the field of the
cluster-lens Abell 370. This object displays, in HST imaging, a spectacular
morphology comparable to nearby ring-galaxies. From spectroscopic observations
at the CFHT, we measured a redshift of based on the identification of
[O ii] 3727 \AA and [Ne v] 3426 \AA emission lines. These emission lines are
typical of starburst galaxies hosting a central active nucleus and are in good
agreement with the assumption that this object is a ring-galaxy. This object is
also detected with ISO in the LW2 and LW3 filters, and the mid Infra-Red (MIR)
flux ratio favors a Seyfert 1 type. The shape of the ring is gravitationally
distorted by the cluster-lens, and most particularly by a nearby cluster
elliptical galaxy. Using the cluster mass model, we can compute its intrinsic
shape. Requiring that the outer ring follows an ellipse we put constraints on
the M/L ratio of the nearby galaxy and derive a magnification factor of 2.5
0.2. The absolute luminosities of the source are then $L_B = 1.3 \
10^{12} L_{B \odot}\nu_\nu \simeq 4. 10^{10}_\odot$ in the
mid-IR.Comment: 5 pages, 5 figures, uses aa.cls, accepted to A&A Letters. Minor
changes, Figure 1 revisited and typos adde
An asteroseismic test of diffusion theory in white dwarfs
The helium-atmosphere (DB) white dwarfs are commonly thought to be the
descendants of the hotter PG1159 stars, which initially have uniform He/C/O
atmospheres. In this evolutionary scenario, diffusion builds a pure He surface
layer which gradually thickens as the star cools. In the temperature range of
the pulsating DB white dwarfs (T_eff ~ 25,000 K) this transformation is still
taking place, allowing asteroseismic tests of the theory. We have obtained
dual-site observations of the pulsating DB star CBS114, to complement existing
observations of the slightly cooler star GD358. We recover the 7 independent
pulsation modes that were previously known, and we discover 4 new ones to
provide additional constraints on the models. We perform objective global
fitting of our updated double-layered envelope models to both sets of
observations, leading to determinations of the envelope masses and pure He
surface layers that qualitatively agree with the expectations of diffusion
theory. These results provide new asteroseismic evidence supporting one of the
central assumptions of spectral evolution theory, linking the DB white dwarfs
to PG1159 stars.Comment: 7 pages, 3 figures, 3 tables, accepted for publication in A&
Experimental demonstration that offspring fathered by old males have shorter telomeres and reduced lifespans
Offspring of older parents frequently show reduced longevity, but the mechanisms driving this so-called 'Lansing effect' are unknown. While inheritance of short telomeres from older parents could underlie this effect, studies to date in different species have found mixed results, reporting positive, negative or no association between parental age and offspring telomere length (TL). However, most of the existing evidence is from non-experimental studies in which it is difficult to exclude alternative explanations such as differential survival of parents with different telomere lengths. Here we provide evidence in the zebra finch that offspring from older parents have reduced lifespans. As a first step in disentangling possible causes, we used an experimental approach to examine whether or not we could detect pre-natal paternal effects on offspring TL. We found that zebra finch embryos fathered by old males have shorter telomeres than those produced by the same mothers but with younger fathers. Since variation in embryonic TL persists into post-natal life, and early life TL is predictive of longevity in this species, this experimental study demonstrates that a paternally driven pre-natal TL reduction could at least in part underlie the reduced lifespan of offspring from older parents
- …
