4,326 research outputs found

    Optimal target search on a fast folding polymer chain with volume exchange

    Full text link
    We study the search process of a target on a rapidly folding polymer (`DNA') by an ensemble of particles (`proteins'), whose search combines 1D diffusion along the chain, Levy type diffusion mediated by chain looping, and volume exchange. A rich behavior of the search process is obtained with respect to the physical parameters, in particular, for the optimal search.Comment: 4 pages, 3 figures, REVTe

    Harmonic operation of a free-electron laser

    Get PDF
    Harmonic operation of a free-electron-laser amplifier is studied. The key issue investigated here is suppression of the fundamental. For a tapered amplifier with the right choice of parameters, it is found that the presence of the harmonic mode greatly reduces the growth rate of the fundamental. A limit on the reflection coefficient of the fundamental mode that will ensure stable operation is derived. The relative merits of tripling the frequency by operating at the third harmonic versus decreasing the wiggler period by a factor of 3 are discussed

    Anomalous diffusion in correlated continuous time random walks

    Full text link
    We demonstrate that continuous time random walks in which successive waiting times are correlated by Gaussian statistics lead to anomalous diffusion with mean squared displacement ~t^{2/3}. Long-ranged correlations of the waiting times with power-law exponent alpha (0<alpha<=2) give rise to subdiffusion of the form ~t^{alpha/(1+alpha)}. In contrast correlations in the jump lengths are shown to produce superdiffusion. We show that in both cases weak ergodicity breaking occurs. Our results are in excellent agreement with simulations.Comment: 6 pages, 6 figures. Slightly revised version, accepted to J Phys A as a Fast Track Communicatio

    Residual mean first-passage time for jump processes: theory and applications to L\'evy flights and fractional Brownian motion

    Full text link
    We derive a functional equation for the mean first-passage time (MFPT) of a generic self-similar Markovian continuous process to a target in a one-dimensional domain and obtain its exact solution. We show that the obtained expression of the MFPT for continuous processes is actually different from the large system size limit of the MFPT for discrete jump processes allowing leapovers. In the case considered here, the asymptotic MFPT admits non-vanishing corrections, which we call residual MFPT. The case of L/'evy flights with diverging variance of jump lengths is investigated in detail, in particular, with respect to the associated leapover behaviour. We also show numerically that our results apply with good accuracy to fractional Brownian motion, despite its non-Markovian nature.Comment: 13 pages, 8 figure

    Anomalous diffusion and generalized Sparre-Andersen scaling

    Full text link
    We are discussing long-time, scaling limit for the anomalous diffusion composed of the subordinated L\'evy-Wiener process. The limiting anomalous diffusion is in general non-Markov, even in the regime, where ensemble averages of a mean-square displacement or quantiles representing the group spread of the distribution follow the scaling characteristic for an ordinary stochastic diffusion. To discriminate between truly memory-less process and the non-Markov one, we are analyzing deviation of the survival probability from the (standard) Sparre-Andersen scaling.Comment: 5 pages, 3 figure

    Modeling Disordered Quantum Systems with Dynamical Networks

    Full text link
    It is the purpose of the present article to show that so-called network models, originally designed to describe static properties of disordered electronic systems, can be easily generalized to quantum-{\em dynamical} models, which then allow for an investigation of dynamical and spectral aspects. This concept is exemplified by the Chalker-Coddington model for the Quantum Hall effect and a three-dimensional generalization of it. We simulate phase coherent diffusion of wave packets and consider spatial and spectral correlations of network eigenstates as well as the distribution of (quasi-)energy levels. Apart from that it is demonstrated how network models can be used to determine two-point conductances. Our numerical calculations for the three-dimensional model at the Metal-Insulator transition point delivers among others an anomalous diffusion exponent of η=3D2=1.7±0.1\eta = 3 - D_2 = 1.7 \pm 0.1. The methods presented here in detail have been used partially in earlier work.Comment: 16 pages, Rev-TeX. to appear in Int. J. Mod. Phys.

    Occurrence of normal and anomalous diffusion in polygonal billiard channels

    Full text link
    From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e. when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t log t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e. power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures, additional comments. Some higher quality figures available at http://www.fis.unam.mx/~dsander

    Fractional Klein-Kramers equation for superdiffusive transport: normal versus anomalous time evolution in a differential L{\'e}vy walk model

    Full text link
    We introduce a fractional Klein-Kramers equation which describes sub-ballistic superdiffusion in phase space in the presence of a space-dependent external force field. This equation defines the differential L{\'e}vy walk model whose solution is shown to be non-negative. In the velocity coordinate, the probability density relaxes in Mittag-Leffler fashion towards the Maxwell distribution whereas in the space coordinate, no stationary solution exists and the temporal evolution of moments exhibits a competition between Brownian and anomalous contributions.Comment: 4 pages, REVTe

    Average shape of fluctuations for subdiffusive walks

    Full text link
    We study the average shape of fluctuations for subdiffusive processes, i.e., processes with uncorrelated increments but where the waiting time distribution has a broad power-law tail. This shape is obtained analytically by means of a fractional diffusion approach. We find that, in contrast with processes where the waiting time between increments has finite variance, the fluctuation shape is no longer a semicircle: it tends to adopt a table-like form as the subdiffusive character of the process increases. The theoretical predictions are compared with numerical simulation results.Comment: 4 pages, 6 figures. Accepted for publication Phys. Rev. E (Replaced for the latest version, in press.) Section II rewritte
    corecore