555 research outputs found
The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development
Important goals in understanding leaf development are to identify genes involved in pattern specification, and also genes that translate this information into cell types and tissue structure. Loss-of-function mutations at the JAGGED (JAG) locus result in Arabidopsis plants with abnormally shaped lateral organs including serrated leaves, narrow floral organs, and petals that contain fewer but more elongate cells. jag mutations also suppress bract formation in leafy, apetala1 and apetala2 mutant backgrounds. The JAG gene was identified by map-based cloning to be a member of the zinc finger family of plant transcription factors and encodes a protein similar in structure to SUPERMAN with a single C2H2-type zinc finger, a proline-rich motif and a short leucine-rich repressor motif. JAG mRNA is localized to lateral organ primordia throughout the plant but is not found in the shoot apical meristem. Misexpression of JAG results in leaf fusion and the development of ectopic leaf-like outgrowth from both vegetative and floral tissues. Thus, JAG is necessary for proper lateral organ shape and is sufficient to induce the proliferation of lateral organ tissue
Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis
Complex patterns of local adaptation in teosinte
Populations of widely distributed species often encounter and adapt to
specific environmental conditions. However, comprehensive characterization of
the genetic basis of adaptation is demanding, requiring genome-wide genotype
data, multiple sampled populations, and a good understanding of population
structure. We have used environmental and high-density genotype data to
describe the genetic basis of local adaptation in 21 populations of teosinte,
the wild ancestor of maize. We found that altitude, dispersal events and
admixture among subspecies formed a complex hierarchical genetic structure
within teosinte. Patterns of linkage disequilibrium revealed four mega-base
scale inversions that segregated among populations and had altitudinal clines.
Based on patterns of differentiation and correlation with environmental
variation, inversions and nongenic regions play an important role in local
adaptation of teosinte. Further, we note that strongly differentiated
individual populations can bias the identification of adaptive loci. The role
of inversions in local adaptation has been predicted by theory and requires
attention as genome-wide data become available for additional plant species.
These results also suggest a potentially important role for noncoding
variation, especially in large plant genomes in which the gene space represents
a fraction of the entire genome
A Prospective Study of the Association of Metacognitive Beliefs and Processes with Persistent Emotional Distress After Diagnosis of Cancer
Two hundred and six patients, diagnosed with primary breast or prostate cancer completed self-report questionnaires on two occasions: before treatment (T1) and 12 months later (T2). The questionnaires included: the Hospital Anxiety and Depression Scale; Impact of Events Scale; the Metacognitions Questionnaire-30 (MCQ-30) and the Illness Perceptions Questionnaire-revised. A series of regression analyses indicated that metacognitive beliefs at T1 predicted between 14 and 19 % of the variance in symptoms of anxiety, depression and trauma at T2 after controlling for age and gender. For all three outcomes, the MCQ-30 subscale ‘negative beliefs about worry’ made the largest individual contribution with ‘cognitive confidence’ also contributing in each case. For anxiety, a third metacognitive variable, ‘positive beliefs about worry’ also predicted variance in T2 symptoms. In addition, hierarchical analyses indicated that metacognitive beliefs explained a small but significant amount of variance in T2 anxiety (2 %) and T2 depression (4 %) over and above that explained by demographic variables, T1 symptoms and T1 illness perceptions. The findings suggest that modifying metacognitive beliefs and processes has the potential to alleviate distress associated with cancer
Plants having modified response to ethylene by transformation with an ETR nucleic acid
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype
Plants having modified response to ethylene by transformation with an ETR nucleic acid
The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype
A hierarchical Bayesian model for estimating age-specific COVID-19 infection fatality rates in developing countries
The COVID-19 infection fatality rate (IFR) is the proportion of individuals
infected with SARS-CoV-2 who subsequently die. As COVID-19 disproportionately
affects older individuals, age-specific IFR estimates are imperative to
facilitate comparisons of the impact of COVID-19 between locations and
prioritize distribution of scare resources. However, there lacks a coherent
method to synthesize available data to create estimates of IFR and
seroprevalence that vary continuously with age and adequately reflect
uncertainties inherent in the underlying data. In this paper we introduce a
novel Bayesian hierarchical model to estimate IFR as a continuous function of
age that acknowledges heterogeneity in population age structure across
locations and accounts for uncertainty in the estimates due to seroprevalence
sampling variability and the imperfect serology test assays. Our approach
simultaneously models test assay characteristic, serology, and death data,
where the serology and death data are often available only for binned age
groups. Information is shared across locations through hierarchical modeling to
improve estimation of the parameters with limited data. Modeling data from 26
developing country locations during the first year of the COVID-19 pandemic, we
found seroprevalence did not change dramatically with age, and the IFR at age
60 was above the high-income country benchmark for most locations
Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins
The shoot apical meristem (SAM) is responsible for the generation of all the aerial parts of plants. Given its critical role, dynamical changes in SAM activity should play a central role in the adaptation of plant architecture to the environment. Using quantitative microscopy, grafting experiments, and genetic perturbations, we connect the plant environment to the SAM by describing the molecular mechanism by which cytokinins signal the level of nutrient availability to the SAM. We show that a systemic signal of cytokinin precursors mediates the adaptation of SAM size and organogenesis rate to the availability of mineral nutrients by modulating the expression of WUSCHEL, a key regulator of stem cell homeostasis. In time-lapse experiments, we further show that this mechanism allows meristems to adapt to rapid changes in nitrate concentration, and thereby modulate their rate of organ production to the availability of mineral nutrients within a few days. Our work sheds light on the role of the stem cell regulatory network by showing that it not only maintains meristem homeostasis but also allows plants to adapt to rapid changes in the environment
Revisiting the ‘Great Levelling’: the limits of Piketty’s Capital and Ideology for understanding the rise of late 20th century inequality
In Capital and Ideology, Thomas Piketty returns to questions of historical inequality, not merely to fill in the gaps in the earlier, widely circulated and impactful Capital in the 21st Century, but to undertake a far more ambitious and nuanced project. Critics (Bhambra and Holmwood 2017; Moeller 2015) pointed out that in the previous book, Piketty’s consideration of the role of high concentrations wealth on inequality focused largely on a handful of relatively wealthy countries (the US, UK, France, Germany and Japan). More importantly, it did not consider the political and economic relationships, forged by European colonization and the trans-Atlantic slave trade, that helped create lasting inequalities in wealth, status, education and life expectancy around the globe. These oversights corresponded to significant methodological gaps, in which inequalities defined by social status and identity, including gender, race and caste, were largely left out of considerations that centred around economic and material disparities. Yet these different forms of inequalities are intimately connected, as gender wage gaps and racial wealth gaps in different parts of the world attest
CT scan screening is associated with increased distress among subjects of the APExS
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the psychological consequences of HRCT scan screening in retired asbestos-exposed workers.</p> <p>Methods</p> <p>A HRCT-scan screening program for asbestos-related diseases was carried out in four regions of France. At baseline (T1), subjects filled in self-administered occupational questionnaires. In two of the regions, subjects also received a validated psychological scale, namely the psychological consequences questionnaire (PCQ). The physician was required to provide the subject with the results of the HRCT scan at a final visit. A second assessment of psychological consequences was performed 6 months after the HRCT-scan examination (T2). PCQ scores were compared quantitatively (t-test, general linear model) and qualitatively (chi²-test, logistic regression) to screening results. Multivariate analyses were adjusted for gender, age, smoking, asbestos exposure and counseling.</p> <p>Results</p> <p>Among the 832 subjects included in this psychological impact study, HRCT-scan screening was associated with a significant increase of the psychological score 6 months after the examination relative to baseline values (8.31 to 10.08, p < 0.0001, t-test). This increase concerned patients with an abnormal HRCT-scan result, regardless of the abnormalities, but also patients with normal HRCT-scans after adjustment for age, gender, smoking status, asbestos exposure and counseling visit. The greatest increase was observed for pleural plaques (+3.60; 95%CI [+2.15;+5.06]), which are benign lesions. Detection of isolated pulmonary nodules was also associated with a less marked but nevertheless significant increase of distress (+1.88; 95%CI [+0.34;+3.42]). However, analyses based on logistic regressions only showed a close to significant increase of the proportion of subjects with abnormal PCQ scores at T2 for patients with asbestosis (OR = 1.92; 95%CI [0.97-3.81]) or with two or more diseases (OR = 2.04; 95%CI [0.95-4.37]).</p> <p>Conclusion</p> <p>This study suggests that HRCT-scan screening may be associated with increased distress in asbestos-exposed subjects. If confirmed, these results may have consequences for HRCT-scan screening recommendations.</p
- …
