718 research outputs found
Sum Rules and Moments of the Nucleon Spin Structure Functions
The nucleon has been used as a laboratory to investigate its own spin
structure and Quantum Chromodynamics. New experimental data on nucleon spin
structure at low to intermediate momentum transfers combined with existing high
momentum transfer data offer a comprehensive picture of the transition region
from the {\it confinement} regime of the theory to its {\it asymptotic freedom}
regime. Insight for some aspects of the theory is gained by exploring lower
moments of spin structure functions and their corresponding sum rules (i.e. the
Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are
expressed in terms of an operator product expansion using quark and gluon
degrees of freedom at moderately large momentum transfers. The sum rules are
verified to a good accuracy assuming that no singular behavior of the structure
functions is present at very high excitation energies. The higher twist
contributions have been examined through the moments evolution as the moments
evolution as the momentum transfer varies from higher to lower values.
Furthermore, QCD-inspired low-energy effective theories, which explicitly
include chiral symmetry breaking, are tested at low momentum transfers. The
validity of these theories is further examined as the momentum transfer
increases to moderate values. It is found that chiral perturbation calculations
agree reasonably well with the first moment of the spin structure function
at momentum transfer of 0.1 GeV but fail to reproduce the neutron
data in the case of the generalized polarizability .Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor
modifications in text and improved quality for one figure. Corrected mistakes
in section
y scaling in electron-nucleus scattering
Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A
Inelastic nucleon contributions in nuclear response functions
We estimate the contribution of inelastic nucleon excitations to the
inclusive cross section in the CEBAF kinematic range.
Calculations are based upon parameterizations of the nucleon structure
functions measured at SLAC. Nuclear binding effects are included in a
vector-scalar field theory, and are assumed have a minimal effect on the
nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and
inelastic nucleon contributions to the nuclear response functions are
comparable, and can be separated, but with roughly a factor of two uncertainty
in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV
this uncertainty is greatly reduced but the elastic nucleon contribution is
heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of
Physics and Astronomy, University of Rochester, Rochester NY 1462
Heating process in the pre-Breakdown regime of the Quantum Hall Efect : a size dependent effect
Our study presents experimental measurements of the contact and longitudinal
voltage drops in Hall bars, as a function of the current amplitude. We are
interested in the heating phenomenon which takes place before the breakdown of
the quantum Hall effect, i.e. the pre-breakdown regime. Two types of samples
has been investigated, at low temperature (4.2 and 1.5K) and high magnetic
field (up to 13 T). The Hall bars have several different widths, and our
observations clearly demonstrate that the size of the sample influences the
heating phenomenon. By measuring the critical currents of both contact and
longitudinal voltages, as a function of the filling factor (around ), we
highlight the presence of a high electric field domain near the source contact,
which is observable only in samples whose width is smaller than 400 microns.Comment: 4 pages, 5 igures, 7th International Symposium of Research in High
Magnetic Fields, to be published in physica
Exploring the properties of the phases of QCD matter - research opportunities and priorities for the next decade
This document provides a summary of the discussions during the recent joint
QCD Town Meeting at Temple University of the status of and future plans for the
research program of the relativistic heavy-ion community. A list of compelling
questions is formulated, and a number of recommendations outlining the greatest
research opportunities and detailing the research priorities of the heavy-ion
community, voted on and unanimously approved at the Town Meeting, are
presented. They are supported by a broad discussion of the underlying physics
and its relation to other subfields. Areas of overlapping interests with the
"QCD and Hadron Structure" ("cold QCD") subcommunity, in particular the
recommendation for the future construction of an Electron-Ion Collider, are
emphasized. The agenda of activities of the "hot QCD" subcommunity at the Town
Meeting is attached.Comment: 34 pages of text, 254 references,16 figure
Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside
PurposeTo delineate some of the characteristics of septic vascular hypotension, to assess the most commonly cited and reported underlying mechanisms of vascular hyporesponsiveness to vasoconstrictors in sepsis, and to briefly outline current therapeutic strategies and possible future approaches. Methods Source data were obtained from a PubMed search of the medical literature with the following MeSH terms: Muscle, smooth, vascular/physiopathology; hypotension/etiology; shock/physiopathology; vasodilation/physiology; shock/therapy; vasoconstrictor agents. Results Nitric oxide (NO) and peroxynitrite are crucial components implicated in vasoplegia and vascular hyporeactivity. Vascular ATP-sensitive and calcium-activated potassium channels are activated during shock and participate in hypotension. In addition, shock state is characterized by inappropriately low plasma glucocorticoid and vasopressin concentrations, a dysfunction and desensitization of alpha-receptors, and an inactivation of catecholamines by oxidation. Numerous other mechanisms have been individualized in animal models, the great majority of which involve NO: MEK1/2–ERK1/2 pathway, H2S, hyperglycemia, and cytoskeleton dysregulation associated with decreased actin expression. Conclusions Many therapeutic approaches have proven their efficiency in animal models, especially therapies directed against one particular compound, but have otherwise failed when used in human shock. Nevertheless, high doses of catecholamines, vasopressin and terlipressin, hydrocortisone, activated protein C, and non-specific shock treatment have demonstrated a partial efficiency in reversing sepsis-induced hypotension
Causality in relativistic many body theory
The stability of the nuclear matter system with respect to density
fluctuations is examined exploring in detail the pole structure of the
electro-nuclear response functions. Making extensive use of the method of
dispersion integrals we calculate the full polarization propagator not only for
real energies in the spacelike and timelike regime but also in the whole
complex energy plane. The latter proved to be necessary in order to identify
unphysical causality violating poles which are the consequence of a neglection
of vacuum polarization. On the contrary it is shown that Dirac sea effects
stabilize the nuclear matter system shifting the unphysical pole from the upper
energy plane back to the real axis. The exchange of strength between these real
timelike collective excitations and the spacelike energy regime is shown to
lead to a reduction of the quasielastic peak as it is seen in electron
scattering experiments. Neglecting vacuum polarization one also obtains a
reduction of the quasielastic peak but in this case the strength is partly
shifted to the causality violating pole mentioned above which consequently
cannot be considered as a physical reliable result. Our investigation of the
response function in the energy region above the threshold of nucleon
anti-nucleon production leads to another remarkable result. Treating the
nucleons as point-like Dirac particles we show that for any isospin independent
NN-interaction RPA-correlations provide a reduction of the production amplitude
for -pairs by a factor 2.Comment: 19 pages Latex including 12 postscript figure
Cooling of electronic components using nanofluids
A finite volume code used for detailed analysis of forced-convection flow in a horizontal channel containing eight heat sources simulating electronic components. The study deals the effect of variations of Reynolds number, the volume fraction and the good choice of type of nanoparticles added to the base fluid. The study shows that the rate of heat transfer increases with increasing Reynolds number and the volume fraction of nanofluids but not infinitely. The analysis of the dynamic and thermal field shows that the heat transfer is improved, with the increase in the Reynolds number and the volume fraction. The study also shows that the choice of nanoparticles added to the base fluid is crucial, otherwise the best cooling electronic components is observed when using copper nanoparticles followed by those of alumina trioxide
Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer
We measured the 12C(e,e'p) cross section as a function of missing energy in
parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV).
At w=475 MeV, at the maximum of the quasielastic peak, there is a large
continuum (E_m > 50 MeV) cross section extending out to the deepest missing
energy measured, amounting to almost 50% of the measured cross section. The
ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330
MeV, well below the maximum of the quasielastic peak, the continuum cross
section is much smaller and the ratio of data to DWIA calculation is 0.85 for
the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that
increase with transform some of the single-nucleon-knockout into
multinucleon knockout, decreasing the valence knockout cross section and
increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear
in Phys Rev
JLab Measurement of the He Charge Form Factor at Large Momentum Transfers
The charge form factor of ^4He has been extracted in the range 29 fm
fm from elastic electron scattering, detecting He
nuclei and electrons in coincidence with the High Resolution Spectrometers of
the Hall A Facility of Jefferson Lab. The results are in qualitative agreement
with realistic meson-nucleon theoretical calculations. The data have uncovered
a second diffraction minimum, which was predicted in the range of this
experiment, and rule out conclusively long-standing predictions of dimensional
scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure
- …
