41,203 research outputs found
An Adverse Outcome Pathway for Potential Space Radiation Induced Neurological Diseases
Astronauts have begun to spend increasingly longer periods in space, putting themselves in foreign environments in order to explore the unknown. Space radiation is one of the largest health risks faced by astronauts on their missions. The space radiation environment has the ability to cause high levels of irreversible damage. Multiple sources of charged particle radiation exist in the space environment that may increase risk of carcinogenesis, degeneration of bodily tissue (e.g. gastrointestinal, cardiovascular, or pulmonary), acute radiation syndromes, and acute and late central nervous system (CNS) disorders. In order to help inform an understanding of the risk of degenerative CNS disease due to radiation exposure, an initial step is presented here to develop an adverse outcome pathway from radiation exposure focused on Alzheimers disease
An opioid-like system regulating feeding behavior in C. elegans
Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggestC. elegans may be the first genetically tractable invertebrate opioid model
Maternal short stature does not predict their children's fatness indicators in a nutritional dual-burden sample of urban Mexican Maya.
The co-existence of very short stature due to poor chronic environment in early life and obesity is becoming a public health concern in rapidly transitioning populations with high levels of poverty. Individuals who have very short stature seem to be at an increased risk of obesity in times of relative caloric abundance. Increasing evidence shows that an individual is influenced by exposures in previous generations. This study assesses whether maternal poor early life environment predicts her child's adiposity using cross sectional design on Maya schoolchildren aged 7-9 and their mothers (n = 57 pairs). We compared maternal chronic early life environment (stature) with her child's adiposity (body mass index [BMI] z-score, waist circumference z-score, and percentage body fat) using multiple linear regression, controlling for the child's own environmental exposures (household sanitation and maternal parity). The research was performed in the south of Merida, Yucatan, Mexico, a low socioeconomic urban area in an upper middle income country. The Maya mothers were very short, with a mean stature of 147 cm. The children had fairly high adiposity levels, with BMI and waist circumference z-scores above the reference median. Maternal stature did not significantly predict any child adiposity indicator. There does not appear to be an intergenerational component of maternal early life chronic under-nutrition on her child's obesity risk within this free living population living in poverty. These results suggest that the co-existence of very short stature and obesity appears to be primarily due to exposures and experiences within a generation rather than across generations
Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
Detonation propagation in a compressible medium wherein the energy release
has been made spatially inhomogeneous is examined via numerical simulation. The
inhomogeneity is introduced via step functions in the reaction progress
variable, with the local value of energy release correspondingly increased so
as to maintain the same average energy density in the medium, and thus a
constant Chapman Jouguet (CJ) detonation velocity. A one-step Arrhenius rate
governs the rate of energy release in the reactive zones. The resulting
dynamics of a detonation propagating in such systems with one-dimensional
layers and two-dimensional squares are simulated using a Godunov-type
finite-volume scheme. The resulting wave dynamics are analyzed by computing the
average wave velocity and one-dimensional averaged wave structure. In the case
of sufficiently inhomogeneous media wherein the spacing between reactive zones
is greater than the inherent reaction zone length, average wave speeds
significantly greater than the corresponding CJ speed of the homogenized medium
are obtained. If the shock transit time between reactive zones is less than the
reaction time scale, then the classical CJ detonation velocity is recovered.
The spatio-temporal averaged structure of the waves in these systems is
analyzed via a Favre averaging technique, with terms associated with the
thermal and mechanical fluctuations being explicitly computed. The analysis of
the averaged wave structure identifies the super-CJ detonations as weak
detonations owing to the existence of mechanical non-equilibrium at the
effective sonic point embedded within the wave structure. The correspondence of
the super-CJ behavior identified in this study with real detonation phenomena
that may be observed in experiments is discussed
Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions
We show how the superconducting phase difference in a Josephson junction may
be used to split the Kramers degeneracy of its energy levels and to remove all
the properties associated with time reversal symmetry. The superconducting
phase difference is known to be ineffective in two-terminal short Josephson
junctions, where irrespective of the junction structure the induced Kramers
degeneracy splitting is suppressed and the ground state fermion parity must
stay even, so that a protected zero-energy Andreev level crossing may never
appear. Our main result is that these limitations can be completely avoided by
using multi-terminal Josephson junctions. There the Kramers degeneracy breaking
becomes comparable to the superconducting gap, and applying phase differences
may cause the change of the ground state fermion parity from even to odd. We
prove that the necessary condition for the appearance of a fermion parity
switch is the presence of a "discrete vortex" in the junction: the situation
when the phases of the superconducting leads wind by . Our approach
offers new strategies for creation of Majorana bound states as well as spin
manipulation. Our proposal can be implemented using any low density, high
spin-orbit material such as InAs quantum wells, and can be detected using
standard tools.Comment: Source code available as ancillary files. 10 pages, 7 figures. v2:
minor changes, published versio
Recommended from our members
Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge
One great advantage of graphene-polyelectrolyte multilayer (GPM) membranes is their tunable structure and internal charge for improved separation performance. In this study, we synthesized GO-dominant GPM membrane with internal negatively-charged domains, polyethyleneimine (PEI)-dominant GPM membrane with internal positively-charged domains and charge-balanced dense/loose GPM membranes by simply adjusting the ionic strength and pH of the GO and PEI solutions used in layer-by-layer membrane synthesis. A combined system of quartz crystal microbalance with dissipation (QCM-D) and ellipsometry was used to analyze the mass deposition, film thickness, and layer density of the GPM membranes. The performance of the GPM membranes were compared in terms of both permeability and selectivity to determine the optimal membrane structure and synthesis strategy. One effective strategy to improve the GPM membrane permeability-selectivity tradeoff is to assemble charge-balanced dense membranes under weak electrostatic interactions. This balanced membrane exhibits the highest MgCl2 selectivity (∼86%). Another effective strategy for improved cation removal is to create PEI-dominant membranes that provide internal positively-charged barrier to enhance cation selectivity without sacrificing water permeability. These findings shine lights on the development of a systematic approach to push the boundary of permeability-selectivity tradeoff for GPM membranes
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
The difference of boundary effects between Bose and Fermi systems
In this paper, we show that there exists an essential difference of boundary
effects between Bose and Fermi systems both for Dirichlet and Neumann boundary
conditions: at low temperatures and high densities the influence of the
boundary on the Bose system depends on the temperature but is independent of
the density, but for the Fermi case the influence of the boundary is
independent of the temperature but depends on the density, after omitting the
negligible high-order corrections. We also show that at high temperatures and
low densities the difference of the influence of the boundary between Bose and
Fermi systems appears in the next-to-leading order boundary contribution, and
the leading boundary contribution is independent of the density. Moreover, for
calculating the boundary effects at high temperatures and low densities, since
the existence of the boundary modification causes the standard virial expansion
to be invalid, we introduce a modified virial expansion.Comment: 8 page
- …
