3,883 research outputs found
Regenerative fuel cell energy storage system for a low earth orbit space station
A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items
Screening donors for xenotransplantation: The potential for xenozoonoses
Xenotransplantation is a potential solution to the current donor shortage for solid organ transplantation. The transmission of infectious agents from donor organs or bone marrow to the recipient is a well-recognized phenomenon following allotransplantation. Thus the prospect of xenotransplantation raises the issue of xenozoonoses-i.e., the transmission of animal infections to the human host. Anticipating an increasing number of baboon to human transplants, 31 adult male baboons (Papio cynocephalus) from a single colony in the United States were screened for the presence of antibody to microbial agents (principally viral) that may pose a significant risk of infection. Antibody to simian cytomegalovirus, simian agent 8 and Epstein-Barr virus, was found in 97% of animals tested. Antibody to simian retroviruses and Toxoplasma gondii was found in 30% and 32% respectively. Discordant results were found when paired samples were examined by two primate laboratories. This was particularly noted when methodologies were based on cross-reaction with human viral antigens. These results highlight the need to develop specific antibody tests against the species used for xenotransplantation. © 1994 Williams & Wilkins
Parvovirus B19 infection in pediatric transplant patients
Evidence of recent parvovirus virus infection (as determined by the presence of a positive IgM antibody titer) without other identified causes of anemia was found in 5 of 26 pediatric solid-organ transplant recipients evaluated for moderate-to-severe anemia between June 1990 and July 1991. Anemia tended to be chronic (median duration of anemia at the time of diagnosis was 12 weeks) and was associated with normal red blood cell indices in the absence of reticulocytes. The median age of the children at the time of presentation with anemia due to parvovirus was 1.8 years at a median time of 8 months after transplantation. Four of the 5 children were treated with i.v. immunoglobulin because of persistance of anemia requiring blood transfusions. A response characterized by an increase in reticulocyte count and normalization of hemoglobin was seen in each of these patients 2-4 weeks after treatment. The remaining patient experienced a spontaneous recovery from her anemia. Parvovirus infection should be included in the differential diagnosis of solid-organ transplant recipients presenting with severe anemia associated with low or absent reticulocytes
In brief: sharing the fruits of trade.
One of CEP's core research themes is the impact of trade openness on countries, firms, regions, communities and sectors.Two recent studies confirm the gains from opening up trade - but recognise that addressing the uneven outcomes of globalisation is as big a challenge as pursuing liberalisation in the face of entrenched interests.
Synthetic Mudscapes: Human Interventions in Deltaic Land Building
In order to defend infrastructure, economy, and settlement in Southeast Louisiana, we must construct new land to
mitigate increasing risk. Links between urban environments and economic drivers have constrained the dynamic delta
landscape for generations, now threatening to undermine the ecological fitness of the entire region. Static methods of
measuring, controlling, and valuing land fail in an environment that is constantly in flux; change and indeterminacy are
denied by traditional inhabitation.
Multiple land building practices reintroduce deltaic fluctuation and strategic deposition of fertile material to form the
foundations of a multi-layered defence strategy. Manufactured marshlands reduce exposure to storm surge further
inland. Virtual monitoring and communication networks inform design decisions and land use becomes determined
by its ecological health. Mudscapes at the threshold of land and water place new value on former wastelands. The
social, economic, and ecological evolution of the region are defended by an expanded web of growing land
Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces
Using a combination of first-principles theory and experiments, we provide a
quantitative explanation for chemical contributions to surface-enhanced Raman
spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on
planar Au(111) surfaces. With density functional theory calculations of the
static Raman tensor, we demonstrate and quantify a strong mode-dependent
modification of benzene thiol Raman spectra by Au substrates. Raman active
modes with the largest enhancements result from stronger contributions from Au
to their electron-vibron coupling, as quantified through a deformation
potential, a well-defined property of each vibrational mode. A straightforward
and general analysis is introduced that allows extraction of chemical
enhancement from experiments for specific vibrational modes; measured values
are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary
fil
Engineering Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances
Electromagnetic properties of periodic two-dimensional sub-wavelength
structures consisting of closely-packed inclusions of materials with negative
dielectric permittivity in a dielectric host with positive
can be engineered using the concept of multiple electrostatic
resonances. Fully electromagnetic solutions of Maxwell's equations reveal
multiple wave propagation bands, with the wavelengths much longer than the
nanostructure period. It is shown that some of these bands are described using
the quasi-static theory of the effective dielectric permittivity
, and are independent of the nanostructure period. Those bands
exhibit multiple cutoffs and resonances which are found to be related to each
other through a duality condition. An additional propagation band characterized
by a negative magnetic permeability develops when a magnetic moment is induced
in a given nano-particle by its neighbors. Imaging with sub-wavelength
resolution in that band is demonstrated
- …
