833 research outputs found
Recommended from our members
A Task-based Support Architecture for Developing Point-of-care Clinical Decision Support Systems for the Emergency Department
Objectives: The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter.
Methods: The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate.
Results: The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE – a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED.
Conclusions: The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs
Sub-millimeter galaxies as progenitors of compact quiescent galaxies
Three billion years after the big bang (at redshift z=2), half of the most
massive galaxies were already old, quiescent systems with little to no residual
star formation and extremely compact with stellar mass densities at least an
order of magnitude larger than in low redshift ellipticals, their descendants.
Little is known about how they formed, but their evolved, dense stellar
populations suggest formation within intense, compact starbursts 1-2 Gyr
earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise
to such starbursts which produce dense remnants. Sub-millimeter selected
galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a
new, representative spectroscopic sample of compact quiescent galaxies at z=2
and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are
consistent with being the progenitors of z=2 quiescent galaxies, matching their
formation redshifts and their distributions of sizes, stellar masses and
internal velocities. Assuming an evolutionary connection, their space densities
also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr
(consistent with independent estimates), which indicates that the bulk of stars
in these massive galaxies were formed in a major, early surge of
star-formation. These results suggests a coherent picture of the formation
history of the most massive galaxies in the universe, from their initial burst
of violent star-formation through their appearance as high stellar-density
galaxy cores and to their ultimate fate as giant ellipticals.Comment: ApJ (in press
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies
et al.Gamma-ray bursts (GRBs) are themost energetic phenomena in theUniverse; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 20 BeppoSAX and Swift GRB host galaxies (at an average redshift of z = 3.1) located in the Herschel Astrophysical Terahertz Large Area Survey, the Herschel Virgo Cluster Survey, the Herschel Fornax Cluster Survey, the Herschel Stripe 82 Survey and the Herschel Multi-tiered Extragalactic Survey, totalling 880 deg2, or ~3 per cent of the sky in total. Our sample selection is serendipitous, based only on whether the Xray position of a GRB lies within a large-scale Herschel survey - therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100-500 μm, we tentatively detected 1 out of 20GRBhosts located in these fields.We constrain their dustmasses and star formation rates (SFRs), and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on SFR of 500M⊙ yr-1 is consistent with the contribution of such luminous galaxies to the cosmic star formation density.MJM acknowledges the support of the UK Science and Technology Facilities Council. NB is supported by the EC FP7 SPACE project ASTRODEEP (Ref. No. 312725). EI acknowledges funding from CONICYT/FONDECYT postdoctoral project no. 3130504. LD, RJI and SJM acknowledge support from ERC Advanced Grant COSMICISM. JGN acknowledges financial support from the Spanish CSIC for a JAE-DOC fellowship, co-funded by the European Social Fund, by the Spanish Ministerio de Ciencia e Innovacion, AYA2012-39475-C02-01, and Consolider-Ingenio 2010, CSD2010-00064, projects.Peer Reviewe
Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity
We have studied the two-dimensional flow of balls in a small angle funnel,
when either the side walls are rough or the balls are polydisperse. As in
earlier work on monodisperse flows in smooth funnels, we observe the formation
of kinematic shock waves/density waves. We find that for rough walls the flows
are more disordered than for smooth walls and that shock waves generally
propagate more slowly. For rough wall funnel flow, we show that the shock
velocity and frequency obey simple scaling laws. These scaling laws are
consistent with those found for smooth wall flow, but here they are cleaner
since there are fewer packing-site effects and we study a wider range of
parameters. For pipe flow (parallel side walls), rough walls support many shock
waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of
balls with varying sizes, we find that flows with weak polydispersity behave
qualitatively similar to monodisperse flows. For strong polydispersity, scaling
breaks down and the shock waves consist of extended areas where the funnel is
blocked completely.Comment: 11 pages, 15 figures; accepted for PR
Measurement of psychological entitlement in 28 countries
This article presents the cross-cultural validation of the Entitlement Attitudes Questionnaire, a tool designed to measure three facets of psychological entitlement: active, passive, and revenge entitlement. Active entitlement was defined as the tendency to protect individual rights based on self-worthiness. Passive entitlement was defined as the belief in obligations to and expectations toward other people and institutions for the fulfillment of the individual’s needs. Revenge entitlement was defined as the tendency to protect one’s individual rights when violated by others and the tendency to reciprocate insults. The 15-item EAQ was validated in a series of three studies: the first one on a general Polish sample (N = 1,900), the second one on a sample of Polish students (N = 199), and the third one on student samples from 28 countries (N = 5,979). A three-factor solution was confirmed across all samples. Examination of measurement equivalence indicated partial metric invariance of EAQ for all national samples. Discriminant and convergent validity of the EAQ was also confirmed
Herschel ATLAS : the cosmic star formation history of quasar host galaxies
We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 z 6 and absolute I-band magnitudes -22 > I-AB > -32 We use the science demonstration observations of the first similar to 16 deg(2) from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at > 5 sigma at 250, 350 and 500 mu m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > I-AB > -24 have a comoving star formation rate (derived from 100 mu m rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with I-AB -26 have a maximum contribution to the star formation density at z similar to 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)(2.3 +/- 0.7) at z 2, but the evolution at higher luminosities is much faster reaching (1 + z)(10 +/- 1) at -26 > I-AB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation
Grain Dynamics in a Two-dimensional Granular Flow
We have used particle tracking methods to study the dynamics of individual
balls comprising a granular flow in a small-angle two-dimensional funnel. We
statistically analyze many ball trajectories to examine the mechanisms of shock
propagation. In particular, we study the creation of, and interactions between,
shock waves. We also investigate the role of granular temperature and draw
parallels to traffic flow dynamics.Comment: 17 pages, 24 figures. To appear in Phys.Rev.E. High res./color
figures etc. on http://www.nbi.dk/CATS/Granular/GrainDyn.htm
- …
