132 research outputs found
Recommended from our members
PEG−peptide conjugates
The remarkable diversity of the self-assembly behavior
of PEG−peptides is reviewed, including self-assemblies formed by PEG−peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized
Milk fat globule epidermal growth factor-factor 8-derived peptide attenuates organ injury and improves survival in sepsis
INTRODUCTION: Sepsis involves overwhelming inflammatory responses with subsequent immune-suppression that can lead to multiple organ dysfunction and ultimately death. Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a secretory protein found to have multiple biological activities against autoimmune and inflammatory diseases. MFG-E8 contains an Arg-Gly-Asp (RGD) motif involved in cell-cell and cell-matrix interactions. In sepsis, excessive neutrophils migration through endothelial cells and matrix to sites of inflammation results in organ damage. We hypothesized that MFG-E8-derived short peptides (MSP) flanking its RGD motif could provide protection against organ injury in sepsis. METHODS: The differentiated human neutrophil-like HL-60 cells (dHL60) were incubated with a series of peptides flanking the RGD motif of human MFG-E8 for a cell adhesion assay to fibronectin or human pulmonary artery endothelial cells (PAECs). For the induction of sepsis, male C57BL/6 mice (20–25 g) were subjected to cecal ligation and puncture (CLP). Peptide MSP68 (1 mg/kg body weight) or normal saline (vehicle) was injected intravenously at 2 h after CLP. Blood and tissue samples were collected at 20 h after CLP for various measurements. RESULTS: After screening, peptide MSP68 (VRGDV) had the highest inhibition of dHL-60 cell adhesion to fibronectin by 55.8 % and to PAEC by 67.7 %. MSP68 treatment significantly decreased plasma levels of organ injury marker AST by 37.1 % and the proinflammatory cytokines IL-6 and TNF-α by 61.9 % and 22.1 %, respectively after CLP. MSP68 improved the integrity of microscopic architectures, decreased IL-6 levels in the lungs by 85.1 %, and reduced apoptosis. MSP68 treatment also significantly reduced the total number of neutrophil infiltration by 61.9 % and 48.3 % as well as MPO activity by 40.8 % and 47.3 % in the lungs and liver, respectively, after CLP. Moreover, the number of bacteria translocated to mesenteric lymph nodes was decreased by 57 % with MSP68 treatment. Finally, the 10-day survival rate was increased from 26 % in the vehicle group to 58 % in the MSP68-treated group. CONCLUSIONS: MSP68 effectively inhibits excessive neutrophils infiltrating to organs, leading to moderate attenuation of organ injury and significantly improved survival in septic mice. Thus, MSP68 may be a potential therapeutic agent for treating sepsis
Vasopressors and Inotropes in the Treatment of Human Septic Shock: Effect on Innate Immunity?
Catecholamines have been suggested to modulate innate immune responses in experimental settings. The significance hereof in the treatment of human septic shock is unknown. We therefore sought if and how vasopressor/inotropic doses relate to pro-inflammatory mediators during treatment of septic shock. We prospectively studied 20 consecutive septic shock patients. For 3 days after admission, hemodynamic variables, lactate and plasma levels of interleukins (IL)-6 and 8, tumor necrosis factor (TNF)-α, and elastase-α1-antitrypsin were measured six hourly. Doses of vasoactive drugs were recorded. Of the 20 patients, nine died in the intensive care unit. Dobutamine doses were positively associated and related to TNF-α plasma levels, independently of disease severity, hemodynamics, and outcome, in multivariable models. Dopamine doses were positively associated with IL-6, and norepinephrine was inversely associated with IL-8 and TNF-α levels. Our observations suggest that catecholamines used in the treatment of human septic shock differ in their potential modulation of the innate immune response to sepsis in vivo. Dobutamine treatment may contribute to circulating TNF-α and dopamine to IL-6, independently of activated neutrophils. Conversely, norepinephrine may lack pro-inflammatory actions
Pivotal Role of the α2A-Adrenoceptor in Producing Inflammation and Organ Injury in a Rat Model of Sepsis
Background: Norepinephrine (NE) modulates the responsiveness of macrophages to proinflammatory stimuli through the activation of adrenergic receptors (ARs). Being part of the stress response, early increases of NE in sepsis sustain adverse systemic inflammatory responses. The intestine is an important source of NE release in the early stage of cecal ligation and puncture (CLP)-induced sepsis in rats, which then stimulates TNF-a production in Kupffer cells (KCs) through the activation of the a2-AR. It is important to know which of the three a2-AR subtypes (i.e., a2A, a2B or a2C) is responsible for the upregulation of TNF-a production. The aim of this study was to determine the contribution of a2A-AR in this process.
Methodology/Principal Findings: Adult male rats underwent CLP and KCs were isolated 2 h later. Gene expression of a2A-AR was determined. In additional experiments, cultured KCs were incubated with NE with or without BRL-44408 maleate, a specific a2A-AR antagonist, and intraportal infusion of NE for 2 h with or without BRL-44408 maleate was carried out in normal animals. Finally, the impact of a2A-AR activation by NE was investigated under inflammatory conditions (i.e., endotoxemia and CLP). Gene expression of the a2A-AR subtype was significantly upregulated after CLP. NE increased the release of TNF-a in cultured KCs, which was specifically inhibited by the a2A-AR antagonist BRL-44408. Equally, intraportal NE infusion increased TNF-a gene expression in KCs and plasma TNF-a which was also abrogated by co-administration of BRL-44408. NE also potentiated LPS-induced TNF-a release via the a2A-AR in vitro and in vivo. This potentiation of TNF-a release by NE was mediated through the a2A-AR coupled Gai protein and the activation of the p38 MAP kinase. Treatment of septic animals with BRL-44408 suppressed TNF-a, prevented multiple organ injury and significantly improved survival from 45% to 75%.
Conclusions/Significance: Our novel finding is that hyperresponsiveness to a2-AR stimulation observed in sepsis is primarily due to an increase in a2A-AR expression in KCs. This appears to be in part responsible for the increased proinflammatory response and ensuing organ injury in sepsis. These findings provide important feasibility information for further developing the a2A-AR antagonist as a new therapy for sepsis
A fluorogenic cyclic peptide for imaging and quantification of drug-induced apoptosis
Programmed cell death or apoptosis is a central biological process that is dysregulated in many diseases, including inflammatory conditions and cancer. The detection and quantification of apoptotic cells in vivo is hampered by the need for fixatives or washing steps for non-fluorogenic reagents, and by the low levels of free calcium in diseased tissues that restrict the use of annexins. In this manuscript, we report the rational design of a highly stable fluorogenic peptide (termed Apo-15) that selectively stains apoptotic cells in vitro and in vivo in a calcium-independent manner and under wash-free conditions. Furthermore, using a combination of chemical and biophysical methods, we identify phosphatidylserine as a molecular target of Apo-15. We demonstrate that Apo-15 can be used for the quantification and imaging of drug-induced apoptosis in preclinical mouse models, thus creating opportunities for assessing the in vivo efficacy of anti-inflammatory and anti-cancer therapeutics
Application of high-resolution mass spectrometry to determination of baclofen in a case of fatal intoxication
Garantia literária: elementos para uma revisão crítica após um século
This study contributes to a critical synthesis of the principle of literary warrant, initially formulated by Hulme in 1911. Hulme proposed that the terms of a classification system should be derived from the literature to be classified, rather than based on purely theoretical considerations. Founding literary warrant on literature which is actually documented rather than on scientific or philosophical classifications or on the supposed authority of the first classificationists implied a clear departure from the conceptions of Harris and Dewey, who had used the classifications of Bacon and Leibniz as models. The validity of this principle over the past century is studied by means of diverse documental data (entries in dictionaries, retrieval by Google, etc.), as it is recognized as a main methodological element for classification standards and systems. This study also discusses the situation with respect to the top-down or bottom-up methodologies of system design. Three traditional applications of literary warrant are described as well as three new applications are suggested, in light of its methodological potential. It is possible to conclude that this principle will find increasing applications in other contexts, within and beyond Information Science.Univ Estadual Paulista, Dept Ciência Informação, BR-17525900 Marilia, SP, BrazilUniv Republica, Montevideo, UruguayUniv Granada, Fac Comunicacao & Documentacao, Granada, SpainUniv Estadual Paulista, Dept Ciência Informação, BR-17525900 Marilia, SP, Brazi
Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization
- …
