2,066 research outputs found
An analysis of commitment strategies in planning: The details
We compare the utility of different commitment strategies in planning. Under a 'least commitment strategy', plans are represented as partial orders and operators are ordered only when interactions are detected. We investigate claims of the inherent advantages of planning with partial orders, as compared to planning with total orders. By focusing our analysis on the issue of operator ordering commitment, we are able to carry out a rigorous comparative analysis of two planners. We show that partial-order planning can be more efficient than total-order planning, but we also show that this is not necessarily so
An extended abstract: A heuristic repair method for constraint-satisfaction and scheduling problems
The work described in this paper was inspired by a surprisingly effective neural network developed for scheduling astronomical observations on the Hubble Space Telescope. Our heuristic constraint satisfaction problem (CSP) method was distilled from an analysis of the network. In the process of carrying out the analysis, we discovered that the effectiveness of the network has little to do with its connectionist implementation. Furthermore, the ideas employed in the network can be implemented very efficiently within a symbolic CSP framework. The symbolic implementation is extremely simple. It also has the advantage that several different search strategies can be employed, although we have found that hill-climbing methods are particularly well-suited for the applications that we have investigated. We begin the paper with a brief review of the neural network. Following this, we describe our symbolic method for heuristic repair
The min-conflicts heuristic: Experimental and theoretical results
This paper describes a simple heuristic method for solving large-scale constraint satisfaction and scheduling problems. Given an initial assignment for the variables in a problem, the method operates by searching through the space of possible repairs. The search is guided by an ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. We demonstrate empirically that the method performs orders of magnitude better than traditional backtracking techniques on certain standard problems. For example, the one million queens problem can be solved rapidly using our approach. We also describe practical scheduling applications where the method has been successfully applied. A theoretical analysis is presented to explain why the method works so well on certain types of problems and to predict when it is likely to be most effective
Brief Note Elemental Analysis of Biological Material in the Fresh-Frozen State
Author Institution: Department of Zoology and Department of Surgery, The Ohio State Universit
Depletion forces near curved surfaces
Based on density functional theory the influence of curvature on the
depletion potential of a single big hard sphere immersed in a fluid of small
hard spheres with packing fraction \eta_s either inside or outside of a hard
spherical cavity of radius R_c is calculated. The relevant features of this
potential are analyzed as function of \eta_s and R_c. There is a very slow
convergence towards the flat wall limit R_c \to \infty. Our results allow us to
discuss the strength of depletion forces acting near membranes both in normal
and lateral directions and to make contact with recent experimental results
On the Migration of Jupiter and Saturn: Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets
We examine how the late divergent migration of Jupiter and Saturn may have
perturbed the terrestrial planets. We identify six secular resonances between
the nu_5 apsidal eigenfrequency of Jupiter and Saturn and the four
eigenfrequencies of the terrestrial planets (g_{1-4}). We derive analytic upper
limits on the eccentricity and orbital migration timescale of Jupiter and
Saturn when these resonances were encountered to avoid perturbing the
eccentricities of the terrestrial planets to values larger than the observed
ones. If Jupiter and Saturn migrated with eccentricities comparable to their
present day values, smooth migration with exponential timescales characteristic
of planetesimal-driven migration (\tau~5-10 Myr) would have perturbed the
eccentricities of the terrestrial planets to values greatly exceeding the
observed ones. This excitation may be mitigated if the eccentricity of Jupiter
was small during the migration epoch, migration was very rapid (e.g. \tau<~ 0.5
Myr perhaps via planet-planet scattering or instability-driven migration) or
the observed small eccentricity amplitudes of the j=2,3 terrestrial modes
result from low probability cancellation of several large amplitude
contributions. Further, results of orbital integrations show that very short
migration timescales (\tau<0.5 Myr), characteristic of instability-driven
migration, may also perturb the terrestrial planets' eccentricities by amounts
comparable to their observed values. We discuss the implications of these
constraints for the relative timing of terrestrial planet formation, giant
planet migration, and the origin of the so-called Late Heavy Bombardment of the
Moon 3.9+/-0.1 Ga ago. We suggest that the simplest way to satisfy these
dynamical constraints may be for the bulk of any giant planet migration to be
complete in the first 30-100 Myr of solar system history.Comment: Accepted for publication in The Astrophysical Journa
Formation and Dynamical Evolution of the Neptune Trojans - the Influence of the Initial Solar System Architecture
In this work, we investigate the dynamical stability of pre-formed Neptune
Trojans under the gravitational influence of the four giant planets in compact
planetary architectures, over 10 Myr. In our modelling, the initial orbital
locations of Uranus and Neptune (aN) were varied to produce systems in which
those planets moved on non-resonant orbits, or in which they lay in their
mutual 1:2, 2:3 and 3:4 mean-motion resonances (MMRs). In total, 420
simulations were carried out, examining 42 different architectures, with a
total of 840000 particles across all runs. In the non-resonant cases, the
Trojans suffered only moderate levels of dynamical erosion, with the most
compact systems (those with aN less than or equal 18 AU) losing around 50% of
their Trojans by the end of the integrations. In the 2:3 and 3:4 MMR scenarios,
however, dynamical erosion was much higher with depletion rates typically
greater than 66% and total depletion in the most compact systems. The 1:2
resonant scenarios featured disruption on levels intermediate between the
non-resonant cases and other resonant scenarios, with depletion rates of the
order of tens of percent. Overall, the great majority of plausible
pre-migration planetary architectures resulted in severe levels of depletion of
the Neptunian Trojan clouds. In particular, if Uranus and Neptune formed near
their mutual 2:3 or 3:4 MMR and at heliocentric distances within 18 AU (as
favoured by recent studies), we found that the great majority of pre-formed
Trojans would have been lost prior to Neptune's migration. This strengthens the
case for the great bulk of the current Neptunian Trojan population having been
captured during that migration.Comment: 17 pages, 2 figures, MNRAS (in press). Abstract slightly reduced in
size, but in original form in the PDF fil
Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature
We explore the interplay of membrane curvature and nonspecific binding due to
excluded-volume effects among colloidal particles inside lipid bilayer
vesicles. We trapped submicron spheres of two different sizes inside a
pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to
the vesicle's surface and pushed in the direction of increasing curvature. A
simple model predicts that hard spheres can induce shape changes in flexible
vesicles. The results demonstrate an important relationship between the shape
of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at
http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press
(1997
- …
