194 research outputs found

    Sailing into a dilemma : an economic and legal analysis of an EU trading scheme for maritime emissions

    Full text link
    On the basis of a joint economic and legal analysis, we evaluate the effects of a “regional” (European) emission trading scheme aiming at reducing emissions of international shipping. The focus lies on the question which share of emissions from maritime transport activities to and from the EU can and should be included in such a system. Our findings suggest that the attempt to implement an EU maritime ETS runs into a dilemma. It is not possible to design a system that achieves emission reductions in a cost efficient manner and is compatible with international law

    The effect of magnesium on bioactivity, rheology and biology behaviors of injectable bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane nanocomposite-paste for small bone defects repair

    Get PDF
    Injectable bioactive glass-based pastes represent promising biomaterials to fill small bone defects thus improving and speed up the self-healing process. Accordingly, injectable nanocomposite pastes based on bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane (GPTMS) were here synthesized via two different glasses 64SiO2. 27CaO. 4MgO. 5P2O5 (mol.%) and 64SiO2.31CaO. 5P2O5 (mol.%). In particular, the effects of MgO on bioactivity, rheology, injectability, disintegration resistance, compressive strength and cellular behaviors were investigated. The results showed that the disintegration resistance and compressive strength of the composite were improved by the replacement of MgO; thus, leading to an increase in the amount of storage modulus (G′) from 26800 to 43400 Pa, equal to an increase in the viscosity of the paste from 136 × 103 to 219 × 103 Pa s. Since the release rate of ions became more controllable, the formation of calcite was decreased after immersion of the Mg bearing samples in the SBF solution. Specimens’ cytocompatibility was firstly verified towards human osteoblasts by metabolic assay as well as visually confirmed by the fluorescent live/dead staining; finally, the ability of human fibroblasts to penetrate within the pores of 3D composites was verified by a migration assay simulating the devices repopulation upon injection in the injured site

    Moving toward precision and personalized treatment strategies in psychiatry

    Get PDF
    Precision psychiatry aims to improve routine clinical practice by integrating biological, clinical, and environmental data. Many studies have been performed in different areas of research on major depressive disorder, bipolar disorder, and schizophrenia. Neuroimaging and electroencephalography findings have identified potential circuit-level abnormalities predictive of treatment response. Protein biomarkers, including IL-2, S100B, and NfL, and the kynurenine pathway illustrate the role of immune and metabolic dysregulation. Circadian rhythm disturbances and the gut microbiome have also emerged as critical transdiagnostic contributors to psychiatric symptomatology and outcomes. Moreover, advances in genomic research and polygenic scores support the perspective of personalized risk stratification and medication selection.While challenges remain, such as data replication issues, prediction model accuracy, and scalability, the progress so far achieved underscores the potential of precision psychiatry in improving diagnostic accuracy and treatment effectiveness

    Corrigendum to: Cohort profile: Extended Cohort for E-health, Environment and DNA (EXCEED)

    Get PDF
    This is a correction to: International Journal of Epidemiology, Volume 48, Issue 3, June 2019, Pages 678–679j, https://doi.org/10.1093/ije/dyz07

    Testing the effect of relative pollen productivity on the REVEALS model: a validated reconstruction of Europe-wide Holocene vegetation

    Get PDF
    Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity

    Testing the effect of relative pollen productivity on the REVEALS model: a validated reconstruction of Europe-wide Holocene vegetation

    Get PDF
    Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity
    corecore