3,193 research outputs found
State of Alaska Election Security Project Phase 2 Report
A laska’s election system is among the most secure in the country,
and it has a number of safeguards other states are now adopting. But
the technology Alaska uses to record and count votes could be improved—
and the state’s huge size, limited road system, and scattered communities
also create special challenges for insuring the integrity of the vote.
In this second phase of an ongoing study of Alaska’s election
security, we recommend ways of strengthening the system—not only the
technology but also the election procedures. The lieutenant governor
and the Division of Elections asked the University of Alaska Anchorage to
do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell.
State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference
Brillouin light scattering study of CoCrFeAl and CoFeAl Heusler compounds
The thermal magnonic spectra of CoCrFeAl (CCFA) and
CoFeAl were investigated using Brillouin light scattering spectroscopy
(BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be
0.48 erg/cm (203 meV A), while for CoFeAl the corresponding values
of 1.55 erg/cm (370 meV A) were found. The observed asymmetry in the
BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an
interplay between the asymmetrical profiles of hybridized Damon-Esbach and
perpendicular standing spin-wave modes, combined with the optical sensitivity
of the BLS signal to the upper side of the CCFA or CoFeAl film
Analytical expression of the magneto-optical Kerr effect and Brillouin light scattering intensity arising from dynamic magnetization
Time-resolved magneto-optical Kerr effect (MOKE) and Brillouin light
scattering (BLS) spectroscopy are important techniques for the investigation of
magnetization dynamics. Within this article, we calculate analytically the MOKE
and BLS signals from prototypical spin-wave modes in the ferromagnetic layer.
The reliability of the analytical expressions is confirmed by optically exact
numerical calculations. Finally, we discuss the dependence of the MOKE and BLS
signals on the ferromagnetic layer thickness
Optical Properties of Deep Ice at the South Pole - Absorption
We discuss recent measurements of the wavelength-dependent absorption
coefficients in deep South Pole ice. The method uses transit time distributions
of pulses from a variable-frequency laser sent between emitters and receivers
embedded in the ice. At depths of 800 to 1000 m scattering is dominated by
residual air bubbles, whereas absorption occurs both in ice itself and in
insoluble impurities. The absorption coefficient increases approximately
exponentially with wavelength in the measured interval 410 to 610 nm. At the
shortest wavelength our value is about a factor 20 below previous values
obtained for laboratory ice and lake ice; with increasing wavelength the
discrepancy with previous measurements decreases. At around 415 to 500 nm the
experimental uncertainties are small enough for us to resolve an extrinsic
contribution to absorption in ice: submicron dust particles contribute by an
amount that increases with depth and corresponds well with the expected
increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The
laser pulse method allows remote mapping of gross structure in dust
concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9
figures, not included, available on request from [email protected]
Correlation of Adherence to the 2012 Infectious Diseases Society of America Practice Guidelines with Patient Outcomes in the Treatment of Diabetic Foot Infections in an Outpatient Parenteral Antimicrobial Programme
Aim
To evaluate adherence to the 2012 Infectious Diseases Society of America practice guidelines for the management of patients with diabetic foot infections and to determine an association between adherence and clinical outcome. Methods
A retrospective chart review was performed to evaluate the management and clinical outcomes of patients with diabetic foot infections treated with outpatient parenteral antimicrobial therapy between 1 January 2011 and 30 June 2012 at Wishard Health Services/Eskenazi Health. Adherence to individual Infectious Diseases Society of America diabetic foot infection treatment guideline recommendations was measured, and then assessed in relation to clinical outcome. Results
A total of 57 patients (61% male, mean age 54 years) with moderate to severe diabetic foot infection met the inclusion criteria. None of the treatment courses of these patients adhered to all the Infectious Diseases Society of America guideline recommendations. The recommendations most frequently adhered to were consultation of appropriate multidisciplinary teams (n=54, 94.7%) and performance of diagnostic imaging (n=52, 89.5%). The recommendations least frequently adhered to were diabetic foot wound classification scoring on admission (n=0, 0%), appropriate culture acquisition (n=12, 21.2%), surgical intervention when indicated (n=32, 46.2%) and appropriate empiric antibiotic selection (n=34, 59.7%). Of 56 patients, 52 (92.9%) experienced clinical cure at the end of outpatient parenteral antimicrobial therapy compared with 34 of 53 patients (64%) at 6 months after the completion of therapy. Adherence to individual guidelines was not associated with clinical outcome. Patients who experienced treatment failure were more likely to have severe diabetic foot infection or peripheral neuropathy. Conclusions
Adherence to the Infectious Diseases Society of America diabetic foot infection guideline recommendations was found to be suboptimal in the present study. The effect of adhering to individual Infectious Diseases Society of America diabetic foot infection recommendations on clinical outcome needs to be investigated
Quality of Life Changes Following Peripheral Blood Stem Cell Transplantation and Participation in a Mixed-Type, Moderate-intensity, Exercise Program
Summary:The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on quality of life (QoL), and to determine the effect of participating in a mixed-type, moderate-intensity exercise program on QoL. It was also an objective to determine the relationship between peak aerobic capacity and QoL in PBST patients. QoL was assessed via the CARES questionnaire and peak aerobic capacity by a maximal graded treadmill test, pretransplant (PI), post transplant (PII) and following a 12-week intervention period (PIII). At PII, 12 patients were divided equally into a control or exercise intervention group. Undergoing a PBST was associated with a statistically but not clinically significant decline in QoL (P<0.05). Following the intervention, exercising patients demonstrated an improved QoL when compared with pretransplant ratings (P<0.01) and nonexercising transplant patients (P<0.05). Moreover, peak aerobic capacity and QoL were correlated (P<0.05). The findings demonstrated that exercise participation following oncology treatment is associated with a reduction in the number and severity of endorsed problems, which in turn leads to improvements in global, physical and psychosocial QoL. Furthermore, a relationship between fitness and QoL exists, with those experiencing higher levels of fitness also demonstrating higher QoL.Bone Marrow Transplantation (2004) 33, 553-558. doi:10.1038/sj.bmt.1704378 Published online 12 January 200
A Three-Stage Search for Supermassive Black Hole Binaries in LISA Data
Gravitational waves from the inspiral and coalescence of supermassive
black-hole (SMBH) binaries with masses ~10^6 Msun are likely to be among the
strongest sources for the Laser Interferometer Space Antenna (LISA). We
describe a three-stage data-analysis pipeline designed to search for and
measure the parameters of SMBH binaries in LISA data. The first stage uses a
time-frequency track-search method to search for inspiral signals and provide a
coarse estimate of the black-hole masses m_1, m_2 and of the coalescence time
of the binary t_c. The second stage uses a sequence of matched-filter template
banks, seeded by the first stage, to improve the measurement accuracy of the
masses and coalescence time. Finally, a Markov Chain Monte Carlo search is used
to estimate all nine physical parameters of the binary. Using results from the
second stage substantially shortens the Markov Chain burn-in time and allows us
to determine the number of SMBH-binary signals in the data before starting
parameter estimation. We demonstrate our analysis pipeline using simulated data
from the first LISA Mock Data Challenge. We discuss our plan for improving this
pipeline and the challenges that will be faced in real LISA data analysis.Comment: 12 pages, 3 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
‘O sibling, where art thou?’ – a review of avian sibling recognition with respect to the mammalian literature
Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ‘mixing potential’ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ‘direct familiarisation’ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ‘indirect familiarisation’ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic
Status of the LUX Dark Matter Search
The Large Underground Xenon (LUX) dark matter search experiment is currently
being deployed at the Homestake Laboratory in South Dakota. We will highlight
the main elements of design which make the experiment a very strong competitor
in the field of direct detection, as well as an easily scalable concept. We
will also present its potential reach for supersymmetric dark matter detection,
within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc
One-Sided Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-Uniform Meshes
In this paper, we introduce a new position-dependent Smoothness-Increasing Accuracy-Conserving (SIAC) filter that retains the benefits of position dependence while ameliorating some of its shortcomings. As in the previous position-dependent filter, our new filter can be applied near domain boundaries, near a discontinuity in the solution, or at the interface of different mesh sizes; and as before, in general, it numerically enhances the accuracy and increases the smoothness of approximations obtained using the discontinuous Galerkin (dG) method. However, the previously proposed position-dependent one-sided filter had two significant disadvantages: (1) increased computational cost (in terms of function evaluations), brought about by the use of central B-splines near a boundary (leading to increased kernel support) and (2) increased numerical conditioning issues that necessitated the use of quadruple precision for polynomial degrees of for the reported accuracy benefits to be realizable numerically. Our new filter addresses both of these issues --- maintaining the same support size and with similar function evaluation characteristicsas the symmetric filter in a way that has better numerical conditioning --- making it, unlike its predecessor, amenable for GPU computing. Our new filter was conceived by revisiting the original error analysis for superconvergence of SIAC filters and by examining the role of the B-splines and their weights in the SIAC filtering kernel. We demonstrate, in the uniform mesh case, that our new filter is globally superconvergent for and superconvergent in the interior (e.g., region excluding the boundary) for . Furthermore, we present the first theoretical proof of superconvergence for postprocessing over smoothly varying meshes, and explain the accuracy-order conserving nature of this new filter when applied to certain non-uniform meshes cases. We provide numerical examples supporting our theoretical results and demonstrating that our new filter, in general, enhances the smoothness and accuracy of the solution. Numerical results are presented for solutions of both linear and nonlinear equation solved on both uniform and non-uniform one- and two-dimensional meshes
- …
