909 research outputs found
Reconstruction of the insulin-like signalling pathway of Haemonchus contortus
Background: In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans.
Methods: We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus.
Results: The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans.
Conclusions: This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes
Crystal structure of isobutyl 4-(2-chloro-phenyl)-5-cyano-6-{(E)-[(dimethylamino)-methylidene]amino}-2-methyl-4H-pyran-3-carboxylate
The authors thank Dr Babu Varghese, Senior Scientific Officer SAIF, IIT Madras, India, for carrying out the data collection.Peer reviewedPublisher PD
Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size
We identify a class of composite membranes: fluid bilayers coupled to an
elastic meshwork, that are such that the meshwork's energy is a function
\textit{not} of the real microscopic membrane area ,
but of a \textit{smoothed} membrane's area , which corresponds to the
area of the membrane coarse-grained at the mesh size . We show that the
meshwork modifies the membrane tension both below and above the scale
, inducing a tension-jump . The
predictions of our model account for the fluctuation spectrum of red blood
cells membranes coupled to their cytoskeleton. Our results indicate that the
cytoskeleton might be under extensional stress, which would provide a means to
regulate available membrane area. We also predict an observable tension jump
for membranes decorated with polymer "brushes"
Assignment of the Human and Mouse Prion Protein Genes to Homologous Chromosomes
Purified preparations of scrapie prions contain one major macromolecule, designated prion protein (PrP). Genes encoding PrP are found in normal animals and humans but not within the infectious particles. The PrP gene was assigned to human chromosome 20 and the corresponding mouse chromosome 2 using somatic cell hybrids. In situ hybridization studies mapped the human PrP gene to band 20p12→pter. Our results should lead to studies of genetic loci syntenic with the PrP gene, which may play a role in the pathogenesis of prion diseases or other degenerative neurologic disorders
Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
In this review, we describe and analyze a mesoscale simulation method for
fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now
called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an
ensemble of point particles. The multi-particle collisions are performed by
grouping particles in collision cells, and mass, momentum, and energy are
locally conserved. This simulation technique captures both full hydrodynamic
interactions and thermal fluctuations. The first part of the review begins with
a description of several widely used MPC algorithms and then discusses
important features of the original SRD algorithm and frequently used
variations. Two complementary approaches for deriving the hydrodynamic
equations and evaluating the transport coefficients are reviewed. It is then
shown how MPC algorithms can be generalized to model non-ideal fluids, and
binary mixtures with a consolute point. The importance of angular-momentum
conservation for systems like phase-separated liquids with different
viscosities is discussed. The second part of the review describes a number of
recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of
viscoelastic fluids
Agronomic Management of Indigenous Mycorrhizas
Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998).
Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry.
Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs.
It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002).
Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial.
Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development.
In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
An open label single arm prospective clinical study in the management of Pakshaghata (CVA due to infarct) with Maharasnadi Kashaya and Shunti Churna
Pakshaghata is one among 80 Vata Namathmaja Vyadhi. In Pakshaghata vitiated Vata resides in one half of body and causes Vishoshana of Sira and Snayu leading to loosening of joints results into manifestation of symptoms like Cheshta Nivrutti, Ruja and Vakstambha. Pakshaghata can be correlated to stroke or CVA. The study aims to evaluate the combined effectiveness of Maharasnadi Kashaya with Shunti Churna as Anupana in management of Pakshaghata (CVA due to infarct). The open label prospective clinical study was conducted among the 32 patients of Pakshaghata by convenient sampling method at a tertiary Hospital Sri Dharmasthala Manjunatheshwara College of Ayurveda & Hospital, Hassan, Karnataka from December 2018 to December 2019. The effectiveness of the drug showed improvement in primary outcome measures such as Cheshta Nivrutti, Vakstambha and Ruk in subjects of Pakshaghata with p value < 0.05. In this study, maximum improvement was found in “Ruk” followed by “Cheshta Nivrutti” and then “Vak Stambha”. Hence this drug is more effective in “Saruja Pakshaghata” hence; it showed improvement in the NIH stroke scale parameters with p value < 0.05. The combined effectiveness of Maharasnadi Kashaya with Shunti Churna as Anupana in management of Pakshaghata (CVA due to Infarct) is proved
The erythroblastic island as an emerging paradigm in the anemia of inflammation
Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands. These functional units consist of a macrophage surrounded by differentiating erythroblasts and have been described more than five decades ago, but their function in the pathophysiology of erythropoiesis has remained unclear until recently. Here we propose that the central macrophage in the erythroblastic island contributes to the pathophysiology of anemia of inflammation. After introducing erythropoiesis and the interactions between the erythroblasts and the central macrophage within the erythroblastic islands, we will discuss the immunophenotypic characterization of this specific subpopulation of macrophages. We will then integrate these concepts into the currently known pathophysiological drivers of anemia of inflammation and address the role of the central macrophage in this disorder. Finally, as a means of furthering our understanding of the various concepts, we will discuss the differences between murine and rat models with regard to developmental and stress erythropoiesis in an attempt to define a model system representative of human pathophysiology
Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis
- …
