635 research outputs found
Formation and dissociation of hydrogen-related defect centers in Mg-doped GaN
Moderately and heavily Mg-doped GaN were studied by a combination of post-growth annealing processes and electron beam irradiation techniques during cathodoluminescence (CL) to elucidate the chemical origin of the recombination centers responsible for the main optical emission lines. The shallow donor at 20-30 meV below the conduction band, which is involved in the donor-acceptor-pair (DAP) emission at 3.27 eV, was attributed to a hydrogen-related center, presumably a (VN-H) complex. Due to the small dissociation energy (<2 eV) of the (VNH) complex, this emission line was strongly reduced by low-energy electron irradiation. CL investigations of the DAP at a similar energetic position in Si-doped (n-type) GaN indicated that this emission line is of different chemical origin than the 3.27 eV DAP in Mg-doped GaN. A slightly deeper DAP emission centered at 3.14 eV was observed following low-energy electron irradiation, indicating the appearance of an additional donor level with a binding energy of 100-200 meV, which was tentatively attributed to a VN-related center. The blue band (2.8-3.0 eV) in heavily Mg-doped GaN was found to consist of at least two different deep donor levels at 350±30 meV and 440±40 meV. The donor level at 350±30 meV was strongly affected by electron irradiation and attributed to a H-related defect
Thermal stability of in-grown vacancy defects in GaN grown by hydride vapor phase epitaxy
We have used positron annihilation spectroscopy to study the thermal behavior of different native vacancy defects typical of freestanding GaN grown by hydride vapor phase epitaxy under high pressure annealing at different annealing temperatures. The results show that the VGa‐ON pairs dissociate and the Ga vacancies anneal out from the bulk of the material at temperatures 1500–1700K. A binding energy of Eb=1.6(4)eV can be determined for the pair. Thermal formation of Ga vacancies is observed at the annealing temperatures above 1700K, indicating that Ga vacancies are created thermally at the high growth temperature, but their ability to form complexes such as VGa‐ON determines the fraction of vacancy defects surviving the cooling down. The formation energy of the isolated Ga vacancy is experimentally determined.Peer reviewe
Delay and distortion of slow light pulses by excitons in ZnO
Light pulses propagating through ZnO undergo distortions caused by both bound
and free excitons. Numerous lines of bound excitons dissect the pulse and
induce slowing of light around them, to the extend dependent on their nature.
Exciton-polariton resonances determine the overall pulse delay and attenuation.
The delay time of the higher-energy edge of a strongly curved light stripe
approaches 1.6 ns at 3.374 eV with a 0.3 mm propagation length. Modelling the
data of cw and time-of-flight spectroscopies has enabled us to determine the
excitonic parameters, inherent for bulk ZnO. We reveal the restrictions on
these parameters induced by the light attenuation, as well as a discrepancy
between the parameters characterizing the surface and internal regions of the
crystal.Comment: 4 pages, 4 figure
Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template
Crack-free bulk-like GaN with high crystalline quality has been obtained by hydride-vapor-phase-epitaxy (HVPE)growth on a two-step epitaxial lateral overgrown GaN template on sapphire. During the cooling down stage, the as-grown 270-μm-thick GaN layer was self-separated from the sapphire substrate. Plan-view transmission electron microscopyimages show the dislocation density of the free-standing HVPE-GaN to be ∼2.5×10 exp 7 cm exp −2 on the Ga-polar face. A low Ga vacancy related defect concentration of about 8×10 exp 15 cm exp−3 is extracted from positron annihilation spectroscopy data. The residual stress and the crystalline quality of the material are studied by two complementary techniques. Low-temperature photoluminescence spectra show the main neutral donor bound exciton line to be composed of a doublet structure at 3.4715 (3.4712) eV and 3.4721 (3.4718) eV for the Ga- (N-) polar face with the higher-energy component dominating. These line positions suggest virtually strain-free material on both surfaces with high crystalline quality as indicated by the small full width at half maximum values of the donor bound exciton lines. The E1(TO) phonon mode position measured at 558.52 cm exp −1 (Ga face) by infrared spectroscopic ellipsometry confirms the small residual stress in the material, which is hence well suited to act as a lattice-constant and thermal-expansion-coefficient matched substrate for further homoepitaxy, as needed for high-quality III-nitride device applications.Peer reviewe
Defect distribution in a-plane GaN on Al2O3
The authors studied the structural and point defect distributions of hydride vapor phase epitaxial GaN film grown in the [11−20] a direction on (1−102) r-plane sapphire with metal-organic vapor phase deposited a-GaN template using transmission electron microscopy, secondary ion mass spectrometry, and positron annihilation spectroscopy. Grown-in extended and point defects show constant behavior as a function of thickness, contrary to the strong nonuniform defect distribution observed in GaN grown along the [0001] direction. The observed differences are explained by orientation-dependent and kinetics related defect incorporation.Peer reviewe
Approximation of excitonic absorption in disordered systems using a compositional component weighted CPA
Employing a recently developed technique of component weighted two particle
Green's functions in the CPA of a binary substitutional alloy we
extend the existing theory of excitons in such media using a contact potential
model for the interaction between electrons and holes to an approximation which
interpolates correctly between the limits of weak and strong disorder. With our
approach we are also able to treat the case where the contact interaction
between carriers varies between sites of different types, thus introducing
further disorder into the system. Based on this approach we study numerically
how the formation of exciton bound states changes as the strengths of the
contact potentials associated with either of the two site types are varied
through a large range of parameter values.Comment: 27 pages RevTeX (preprint format), 13 Postscript figure file
Mie-resonances, infrared emission and band gap of InN
Mie resonances due to scattering/absorption of light in InN containing
clusters of metallic In may have been erroneously interpreted as the infrared
band gap absorption in tens of papers. Here we show by direct thermally
detected optical absorption measurements that the true band gap of InN is
markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence
studies complemented by imaging of metallic In have shown that bright infrared
emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with
surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR
Pure luminescence transitions from a small InAs/GaAs quantum dot exhibiting a single electron level
2 páginas, 3 figuras.Pure photoluminescence spectra originating from a single InAs/GaAs quantum dot, which is small enough to possess only one single-electron level, are demonstrated. A symmetric fine structure of the exciton and the biexciton is observed.Peer reviewe
- …
