212 research outputs found
Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite
The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research
COPeptin for diagnosis and prediction in Acute Coronary Syndrome (COPACS) Study: design and objectives.
Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1
Functional SNPs selected for the study. Table S2. Restriction fragment analysis for BRCA1 mutations. Table S3. Oxidative stress parameters in breast cancer cases according to treatment. (DOCX 31 kb
Performance of highly sensitive cardiac troponin T assay to detect ischaemia at PET-CT in low-risk patients with acute coronary syndrome: a prospective observational study.
Highly sensitive troponin T (hs-TnT) assay has improved clinical decision-making for patients admitted with chest pain. However, this assay's performance in detecting myocardial ischaemia in a lowrisk population has been poorly documented.
To assess hs-TnT assay's performance to detect myocardial ischaemia at positron emission tomography/CT (PET-CT) in low-risk patients admitted with chest pain.
Patients admitted for chest pain with a nonconclusive ECG and negative standard cardiac troponin T results at admission and after 6 hours were prospectively enrolled. Their hs-TnT samples were at T0, T2 and T6. Physicians were blinded to hs-TnT results. All patients underwent a PET-CT at rest and during adenosine-induced stress. All patients with a positive PET-CT result underwent a coronary angiography.
Forty-eight patients were included. Six had ischaemia at PET-CT. All of them had ≥1 significant stenosis at coronary angiography. Areas under the curve (95% CI) for predicting significant ischaemia at PET-CT using hs-TnT were 0.764 (0.515 to 1.000) at T0, 0.812(0.616 to 1.000) at T2 and 0.813(0.638 to 0.989) at T6. The receiver operating characteristicbased optimal cut-off value for hs-TnT at T0, T2 and T6 needed to exclude significant ischaemia at PET-CT was <4 ng/L. Using this value, sensitivity, specificity, positive and negative predictive values of hs-TnT to predict significant ischaemia were 83%/38%/16%/94% at T0, 100%/40%/19%/100% at T2 and 100%/43%/20%/100% at T6, respectively.
Our findings suggest that in low-risk patients, using the hs-TnT assay with a cut-off value of 4 ng/L demonstrates excellent negative predictive value to exclude myocardial ischaemia detection at PET-CT, at the expense of weak specificity and positive predictive value.
ClinicalTrials.gov Identifier: NCT01374607
On a functional equation involving iterates and powers
We present a complete list of all continuous solutions f : (0,+∞)→(0,+∞) of the equation f 2(x) = γ [f (x)]αxβ, where α, β and γ > 0 are given real numbers
Human breast tissue cancer diagnosis by Raman spectroscopy
Abstract. Differences between Raman spectra of normal, malignant and benign tissues have been recorded and analyzed as a method for the early detection of cancer. To the best of our knowledge, this is one of the most statistically reliable research (67 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population. The paper demonstrates that Raman spectroscopy is a promising new tool for real-time diagnosis of tissue abnormalities
Combined Use of High-Sensitive Cardiac Troponin, Copeptin, and the Modified HEART Score for Rapid Evaluation of Chest Pain Patients.
Clinical short-term risk stratification is a recommended approach in patients with chest pain and possible acute myocardial infarction (AMI) to further improve high safety of biomarker-based rule-out algorithms. The study aim was to assess clinical performance of baseline concentrations of high-sensitivity cardiac troponin T (hs-TnT) and copeptin and the modified HEART score (mHS) in early presenters to the emergency department with chest pain.
This cohort study included patients with chest pain with onset maximum of 6 h before admission and no persistent ST-segment elevation on electrocardiogram. hs-TnT, copeptin, and the mHS were assessed from admission data. The diagnostic and prognostic value for three baseline rule-out algorithms: (1) single hs-TnT < 14 ng/l, (2) hs-TnT < 14 ng/l/mHS ≤ 3, and (3) hs-TnT < 14 ng/l/mHS ≤ 3/copeptin < 17.4 pmol/l, was assessed with sensitivity and negative predictive value. Primary diagnostic endpoint was the diagnosis of AMI. Prognostic endpoint was death and/or AMI within 30 days.
Among 154 enrolled patients, 44 (29%) were classified as low-risk according to the mHS; AMI was diagnosed in 105 patients (68%). For ruling out AMI, the highest sensitivity and NPV from all studied algorithms were observed for hs-TnT/mHS/copeptin (100%, 95% CI 96.6-100, and 100%, 95% CI 75.3-100). At 30 days, the highest event-free survival was achieved in patients stratified with hs-TnT/mHS/copeptin algorithm (100%) with 100% (95% CI 75.3-100) NPV and 100% (95% CI 96.6-100) sensitivity.
The combination of baseline hs-TnT, copeptin, and the mHS has an excellent sensitivity and NPV for short-term risk stratification. Such approach might improve the triage system in emergency departments and be a bridge for inclusion to serial blood sampling algorithms
The outcomes of patients with metastatic/inoperable gastrointestinal stromal tumors (GIST) treated with imatinib : an interim multicenter analysis of Polish Clinical GIST Registry
A quantitative thermal analysis of cyclists’ thermo-active base layers
It is well known that clothes used in sporting activity are a barrier for heat exchange between the environment and athlete,
which should help in thermoregulation improvement. However, it is difficult to evaluate which top is best for each athlete
according to the characteristics of the sport. Researchers have tried to measure the athlete’s temperature distribution during
exercise at the base layers of tops with different approaches. The aim of this case study was to investigate the use of
thermography for thermo-active base layer evaluation. Six new base layers were measured on one cyclist volunteer during
a progressive training on a cycloergometer. As a control condition, the skin temperature of the same volunteer was
registered without any layer with the same training. A training protocol was selected approximate to cycling race, which
started from the warm-up stage, next the progressive effort until the race finished and at the end ‘‘cool-down’’ stage was
over. In order to show which layer provided the strongest and weakest barrier for heat exchange in comparison with
environment, the temperature parameters were taken into consideration. The most important parameter in the studies was
the temperature difference between the body and the layers, which was changing during the test time. The studies showed a
correlation between the ergometer power parameter and the body temperature changes, which has a strong and significant
value. Moreover, the mass of every layer was checked before and after the training to evaluate the mass of the sweat
exuded during the test. From this data, the layer mass difference parameter was calculated and taken into consideration as a
parameter, which may correspond with the mean heart rate value from each training. A high and positive correlation
coefficient was obtained between the average heart rate and the mass difference for the base layers. Thermal analysis seems
to have a new potential application in the objective assessment of sports clothing and may help in choosing the proper
clothes, which could support heat transfer during exercising and protect the body from overheating
- …
