2,058 research outputs found
Answering Conjunctive Queries under Updates
We consider the task of enumerating and counting answers to -ary
conjunctive queries against relational databases that may be updated by
inserting or deleting tuples. We exhibit a new notion of q-hierarchical
conjunctive queries and show that these can be maintained efficiently in the
following sense. During a linear time preprocessing phase, we can build a data
structure that enables constant delay enumeration of the query results; and
when the database is updated, we can update the data structure and restart the
enumeration phase within constant time. For the special case of self-join free
conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical,
then query enumeration with sublinear delay and sublinear update time
(and arbitrary preprocessing time) is impossible.
For answering Boolean conjunctive queries and for the more general problem of
counting the number of solutions of k-ary queries we obtain complete
dichotomies: if the query's homomorphic core is q-hierarchical, then size of
the the query result can be computed in linear time and maintained with
constant update time. Otherwise, the size of the query result cannot be
maintained with sublinear update time. All our lower bounds rely on the
OMv-conjecture, a conjecture on the hardness of online matrix-vector
multiplication that has recently emerged in the field of fine-grained
complexity to characterise the hardness of dynamic problems. The lower bound
for the counting problem additionally relies on the orthogonal vectors
conjecture, which in turn is implied by the strong exponential time hypothesis.
By sublinear we mean for some
, where is the size of the active domain of the current
database
Coprological study on intestinal helminths in Swiss dogs: temporal aspects of anthelminthic treatment
Coproscopic examination of 505 dogs originating from the western or central part of Switzerland revealed the presence (prevalence data) of the following helminthes: Toxocara canis (7.1%), hookworms (6.9%), Trichuris vulpis (5.5%), Toxascaris leonina (1.3%), Taeniidae (1.3%), Capillaria spp. (0.8%), and Diphyllobothrium latum (0.4%). Potential risk factors for infection were identified by a questionnaire: dogs from rural areas significantly more often had hookworms and taeniid eggs in their feces when compared to urban family dogs. Access to small rodents, offal, and carrion was identified as risk factor for hookworm and Taeniidae, while feeding of fresh and uncooked meat did not result in higher prevalences for these helminths. A group of 111 dogs was treated every 3months with a combined medication of pyrantel embonate, praziquantel, and febantel, and fecal samples were collected for coproscopy in monthly intervals. Despite treatment, the yearly incidence of T. canis was 32%, while hookworms, T. vulpis, Capillaria spp., and Taeniidae reached incidences ranging from 11 to 22%. Fifty-seven percent of the 111 dogs had helminth eggs in their feces at least once during the 1-year study period. This finding implicates that an infection risk with potential zoonotic pathogens cannot be ruled out for the dog owner despite regular deworming four times a yea
Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires
Negatively and positively charged excitons are identified in the
spatially-resolved photoluminescence spectra of quantum wires. We demonstrate
that charged excitons are weakly localized in disordered quantum wires. As a
consequence, the enhancement of the "binding energy" of a charged exciton is
caused, for a significant part, by the recoil energy transferred to the
remaining charged carrier during its radiative recombination. We discover that
the Coulomb correlation energy is not the sole origin of the "binding energy",
in contrast to charged excitons confined in quantum dots.Comment: 4 Fig
Simultaneous Orthogonal Planarity
We introduce and study the problem: Given planar
graphs each with maximum degree 4 and the same vertex set, do they admit an
OrthoSEFE, that is, is there an assignment of the vertices to grid points and
of the edges to paths on the grid such that the same edges in distinct graphs
are assigned the same path and such that the assignment induces a planar
orthogonal drawing of each of the graphs?
We show that the problem is NP-complete for even if the shared
graph is a Hamiltonian cycle and has sunflower intersection and for
even if the shared graph consists of a cycle and of isolated vertices. Whereas
the problem is polynomial-time solvable for when the union graph has
maximum degree five and the shared graph is biconnected. Further, when the
shared graph is biconnected and has sunflower intersection, we show that every
positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Two-Stage Rotational Disordering of a Molecular Crystal Surface: C60
We propose a two-stage mechanism for the rotational surface disordering phase
transition of a molecular crystal, as realized in C fullerite. Our
study, based on Monte Carlo simulations, uncovers the existence of a new
intermediate regime, between a low temperature ordered state,
and a high temperature disordered phase. In the intermediate
regime there is partial disorder, strongest for a subset of particularly
frustrated surface molecules. These concepts and calculations provide a
coherent understanding of experimental observations, with possible extension to
other molecular crystal surfaces.Comment: 4 pages, 2 figure
Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors
The magnetic structure of antiferromagnetically ordered phases of
quasi-one-dimensional organic conductors is studied theoretically at absolute
zero based on the mean field approximation to the quarter-filled band with
on-site and nearest-neighbor Coulomb interaction. The differences in magnetic
properties between the antiferromagnetic phase of (TMTTF)X and the spin
density wave phase in (TMTSF)X are seen to be due to a varying degrees of
roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb
interaction introduces charge disproportionation, which has the same spatial
periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic
phase. This is in accordance with the results of experiments on (TMTTF)Br
and (TMTTF)SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)Ag
is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys.
Soc. Jpn. 66 No. 5 (1997
Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields
We theoretically study how the coexistent state of the charge density wave
and the spin density wave in the one-dimensional quarter filled band is
enhanced by magnetic fields. We found that when the correlation between
electrons is strong the spin density wave state is suppressed under high
magnetic fields, whereas the charge density wave state still remains. This will
be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure
Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets
An identifying code of a (di)graph is a dominating subset of the
vertices of such that all distinct vertices of have distinct
(in)neighbourhoods within . In this paper, we classify all finite digraphs
which only admit their whole vertex set in any identifying code. We also
classify all such infinite oriented graphs. Furthermore, by relating this
concept to a well known theorem of A. Bondy on set systems we classify the
extremal cases for this theorem
- …
