3,814 research outputs found
Using adiabatic coupling techniques in atom-chip waveguide structures
Adiabatic techniques are well known tools in multi-level electron systems to
transfer population between different states with high fidelity. Recently it
has been realised that these ideas can also be used in ultra-cold atom systems
to achieve coherent manipulation of the atomic centre-of-mass states. Here we
present an investigation into a realistic setup using three atomic waveguides
created on top of an atom chip and show that such systems hold large potential
for the observation of adiabatic phenomena in experiments.Comment: 10 pages, 6 figures, accepted for publication in Physica Scripta for
the CEWQO2009 proceeding
Higgs Boson Exempt No-Scale Supersymmetry with a Neutrino Seesaw: Implications for Lepton Flavor Violation and Leptogenesis
Motivated by the observation of neutrino oscillations, we extend the Higgs
boson exempt no-scale supersymmetry model (HENS) by adding three heavy
right-handed neutrino chiral supermultiplets to generate the light neutrino
masses and mixings. The neutrino Yukawa couplings can induce new lepton flavor
violating couplings among the soft terms in the course of renormalization group
running down from the boundary scale. We study the effects this has on the
predictions for low-energy probes of lepton flavor violation(LFV). Heavy
right-handed neutrinos also provide a way to generate the baryon asymmetry
through leptogenesis. We find that consistency with LFV and leptogenesis puts
strong requirements on either the form of the Yukawa mass matrix or the
smallness of the Higgs up soft mass. In all cases, we generically expect that
new physics LFV is non-zero and can be found in a future experiment.Comment: 25 pages, 11 figures; Added a referenc
Higgs Boson Decays to Neutralinos in Low-Scale Gauge Mediation
We study the decays of a standard model-like MSSM Higgs boson to pairs of
neutralinos, each of which subsequently decays promptly to a photon and a
gravitino. Such decays can arise in supersymmetric scenarios where
supersymmetry breaking is mediated to us by gauge interactions with a
relatively light gauge messenger sector (M_{mess} < 100 TeV). This process
gives rise to a collider signal consisting of a pair of photons and missing
energy. In the present work we investigate the bounds on this scenario within
the minimal supersymmetric standard model from existing collider data. We also
study the prospects for discovering the Higgs boson through this decay mode
with upcoming data from the Tevatron and the LHC.Comment: 18 pages, 5 figures, added references and discussion of neutralino
couplings, same as journal versio
Extreme UV QSOs
We present a sample of spectroscopically confirmed QSOs with FUV-NUV color
(as measured by GALEX photometry) bluer than canonical QSO templates and than
the majority of known QSOs. We analyze their FUV to NIR colors, luminosities
and optical spectra. The sample includes a group of 150 objects at low redshift
(z 0.5), and a group of 21 objects with redshift 1.7z2.6. For the low
redshift objects, the "blue" FUV-NUV color may be caused by enhanced Ly
emission, since Ly transits the GALEX FUV band from z=0.1 to z=0.47.
Synthetic QSO templates constructed with Ly up to 3 times stronger than
in standard templates match the observed UV colors of our low redshift sample.
The H emission increases, and the optical spectra become bluer, with
increasing absolute UV luminosity. The UV-blue QSOs at redshift about 2, where
the GALEX bands sample restframe about 450-590A (FUV) and about 590-940A(NUV),
are fainter than the average of UV-normal QSOs at similar redshift in NUV,
while they have comparable luminosities in other bands. Therefore we speculate
that their observed FUV-NUV color may be explained by a combination of steep
flux rise towards short wavelengths and dust absorption below the Lyman limit,
such as from small grains or crystalline carbon. The ratio of Ly to CIV
could be measured in 10 objects; it is higher (30% on average) than for
UV-normal QSOs, and close to the value expected for shock or collisional
ionization. FULL VERSION AVAILABLE FROM AUTHOR'S WEB SITE:
http://dolomiti.pha.jhu.edu/papers/2009_AJ_Extreme_UV_QSOs.pdfComment: Astronomical Journal, in pres
Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media
The dynamics of tensile crack fronts restricted to advance in a plane are
studied. In an ideal linear elastic medium, a propagating mode along the crack
front with a velocity slightly less than the Rayleigh wave velocity, is found
to exist. But the dependence of the effective fracture toughness on
the crack velocity is shown to destabilize the crack front if
. Short wavelength radiation due to weak random
heterogeneities leads to this instability at low velocities. The implications
of these results for the crack dynamics are discussed.Comment: 12 page
Evidence for a change in the nuclear mass surface with the discovery of the most neutron-rich nuclei with 17<Z <25
The results of measurements of the production of neutron-rich nuclei by the
fragmentation of a 76-Ge beam are presented. The cross sections were measured
for a large range of nuclei including fifteen new isotopes that are the most
neutron-rich nuclides of the elements chlorine to manganese (50-Cl, 53-Ar,
55,56-K, 57,58-Ca, 59,60,61-Sc, 62,63-Ti, 65,66-V, 68-Cr, 70-Mn). The enhanced
cross sections of several new nuclei relative to a simple thermal evaporation
framework, previously shown to describe similar production cross sections,
indicates that nuclei in the region around 62-Ti might be more stable than
predicted by current mass models and could be an indication of a new island of
inversion similar to that centered on 31-Na.Comment: 4 pages, 3 figures, to be published in Physical Review Letters, 200
Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u
Inverse kinematics coupled to a high-resolution spectrometer is used to
investigate the isotopic yields of fission fragments produced in reactions
between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number
and isotopic distributions are reported for the two reactions. These
informations give access to the neutron excess and the isotopic distribution
widths, which together with the atomic-number and mass distributions are used
to investigate the fusion-fission dynamics.Comment: Submitted to PR
Crack Front Waves and the dynamics of a rapidly moving crack
Crack front waves are localized waves that propagate along the leading edge
of a crack. They are generated by the interaction of a crack with a localized
material inhomogeneity. We show that front waves are nonlinear entities that
transport energy, generate surface structure and lead to localized velocity
fluctuations. Their existence locally imparts inertia, which is not
incorporated in current theories of fracture, to initially "massless" cracks.
This, coupled to crack instabilities, yields both inhomogeneity and scaling
behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
- …
