1,417 research outputs found
Piezoelectric Phononic Plates: Retrieving the Frequency Band Structure via All-electric Experiments
We propose an experimental technique based on all-electric measurements to
retrieve the frequency response of a one-dimensional piezoelectric phononic
crystal plate, structured periodically with millimeter-scaled metallic strips
on its two surfaces. The metallic electrodes, used for the excitation of
Lamb-like guided modes in the plate, ensure at the same time control of their
dispersion by means of externally loaded electric circuits that offer
non-destructive tunability in the frequency response of these structures. Our
results, in very good agreement with finite-element numerical predictions,
reveal interesting symmetry aspects that are employed to analyze the frequency
band structure of such crystals. More importantly, Lamb-like guided modes
interact with electric-resonant bands induced by inductance loads on the plate,
whose form and symmetry are discussed and analyzed in depth, showing
unprecedented dispersion characteristics.Comment: This is the version of the article before peer review or editing, as
submitted by an author to Smart Materials and Structures. IOP Publishing Ltd
is not responsible for any errors or omissions in this version of the
manuscript or any version derived from it. The Version of Record is available
online at https://doi.org/10.1088/1361-665X/ab4aa
Observation of topologically protected helical edge modes in Kagome elastic plates
The investigation of topologically protected waves in classical media has
opened unique opportunities to achieve exotic properties like one-way phonon
transport, protection from backscattering and immunity to imperfections.
Contrary to acoustic and electromagnetic domains, their observation in elastic
solids has so far been elusive due to the presence of both shear and
longitudinal modes and their modal conversion at interfaces and free surfaces.
Here we report the experimental observation of topologically protected
helical edge waves in elastic media. The considered structure consists of an
elastic plate patterned according to a Kagome architecture with an accidental
degeneracy of two Dirac cones induced by drilling through holes. The careful
breaking of symmetries couples the corresponding elastic modes which
effectively emulates spin orbital coupling in the quantum spin Hall effect.
The results shed light on the topological properties of the proposed plate
waveguide and opens avenues for the practical realization of compact, passive
and cost-effective elastic topological waveguides
Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model
Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming potential
(GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate therefore requires a capacity
to predict N2O emissions in relation to environmental conditions and crop management. Biophysical
models simulating the dynamics of carbon and nitrogen in agro-ecosystems have a unique potential to
explore these relationships, but are fraught with high uncertainties in their parameters due to their
variations over time and space. Here, we used a Bayesian approach to calibrate the parameters of the N2O
submodel of the agro-ecosystem model CERES-EGC. The submodel simulates N2O emissions from the
nitrification and denitrification processes, which are modelled as the product of a potential rate with
three dimensionless factors related to soil water content, nitrogen content and temperature. These
equations involve a total set of 15 parameters, four of which are site-specific and should be measured on
site, while the other 11 are considered global, i.e. invariant over time and space. We first gathered prior
information on the model parameters based on the literature review, and assigned them uniform
probability distributions. A Bayesian method based on the Metropolis–Hastings algorithm was
subsequently developed to update the parameter distributions against a database of seven different
field-sites in France. Three parallel Markov chains were run to ensure a convergence of the algorithm.
This site-specific calibration significantly reduced the spread in parameter distribution, and the
uncertainty in the N2O simulations. The model’s root mean square error (RMSE) was also abated by 73%
across the field sites compared to the prior parameterization. The Bayesian calibration was subsequently
applied simultaneously to all data sets, to obtain better global estimates for the parameters initially
deemed universal. This made it possible to reduce the RMSE by 33% on average, compared to the
uncalibrated model. These global parameter values may be used to obtain more realistic estimates of
N2O emissions from arable soils at regional or continental scales
Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)
We present observations of rotational lines of H2S, SO and CS performed in
comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure
interferometer (IRAM). The observations provide informations on the spatial and
velocity distributions of these molecules. They can be used to constrain their
photodissociation rate and their origin. We use a radiative transfer code which
allows us to compute synthetic line profiles and interferometric maps, to be
compared to the observations. Both single-dish spectra and interferometric
spectral maps show a day/night asymmetry in the outgassing. From the analysis
of the spectral maps, including the astrometry, we show that SO and CS present
in addition a jet-like structure that may be the gaseous counterpart of the
dust high-latitude jet observed in optical images. A CS rotating jet is also
observed. Using the astrometry provided by continuum radio maps obtained in
parallel, we conclude that there is no need to invoke of nongravitational
forces acting on this comet, and provide an updated orbit. The radial extension
of H2S is found to be consistent with direct release from the nucleus. SO
displays an extended radial distribution. Assuming that SO2 is the parent of
SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from
the Sun. This is lower than most laboratory-based estimates and may suggest
that SO is not solely produced by SO2 photolysis. From the observations of
J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5
s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be
constrained due to insufficient resolution, but our data are consistent with
published values. These observations illustrate the cometary science that will
be performed with the future ALMA interferometer.Comment: Accepted for publication in Astronomy & Astrophysic
Hydrogen Isocyanide in Comet 73P/Schwassmann-Wachmann (Fragment B)
We present a sensitive 3-sigma upper limit of 1.1% for the HNC/HCN abundance
ratio in comet 73P/Schwassmann-Wachmann (Fragment B), obtained on May 10-11,
2006 using Caltech Submillimeter Observatory (CSO). This limit is a factor of
~7 lower than the values measured previously in moderately active comets at 1
AU from the Sun. Comet 73P/Schwassmann-Wachmann was depleted in most volatile
species, except of HCN. The low HNC/HCN ratio thus argues against HNC
production from polymers produced from HCN. However, thermal degradation of
macromolecules, or polymers, produced from ammonia and carbon compounds, such
as acetylene, methane, or ethane appears a plausible explanation for the
observed variations of the HNC/HCN ratio in moderately active comets, including
the very low ratio in comet 73P/Schwassmann-Wachmann reported here. Similar
polymers have been invoked previously to explain anomalous 14N/15N ratios
measured in cometary CN.Comment: 6 pages, 5 figures, 2 table
High resolution spectroscopy of Pluto's atmosphere: detection of the 2.3 m CH bands and evidence for carbon monoxide
The goal is to determine the composition of Pluto's atmosphere and to
constrain the nature of surface-atmosphere interactions.
We perform high--resolution spectroscopic observations in the 2.33--2.36
m range, using CRIRES at the VLT.
We obtain (i) the first detection of gaseous methane in this spectral range,
through lines of the + and + bands (ii) strong
evidence (6- confidence) for gaseous CO in Pluto. For an isothermal
atmosphere at 90 K, the CH and CO column densities are 0.75 and 0.07 cm-am,
within factors of 2 and 3, respectively. Using a physically--based thermal
structure model of Pluto's atmosphere also satisfying constraints from stellar
occultations, we infer CH and CO mixing ratios q=
0.6% (consistent with results from the 1.66 m range) and
q = 0.5. The CO atmospheric abundance is
consistent with its surface abundance. As for Triton, it is probably controlled
by a thin, CO-rich, detailed balancing layer resulting from seasonal transport
and/or atmospheric escape.Comment: Astronomy and Astrophysics Letters, in pres
The unusual volatile composition of the Halley-type comet 8P/Tuttle: Addressing the existence of an Inner Oort Cloud
We measured organic volatiles (CH4, CH3OH, C2H6, H2CO), CO, and water in
comet 8P/Tuttle, a comet from the Oort cloud reservoir now in a short-period
Halley-type orbit. We compare its composition with two other comets in
Halley-type orbits, and with comets of the "organics-normal" and
"organics-depleted" classes. Chemical gradients are expected in the
comet-forming region of the proto-planetary disk, and an individual comet
should reflect its specific heritage. If Halley-type comets came from the inner
Oort cloud as proposed, we see no common characteristics that could distinguish
such comets from those that were stored in the outer Oort cloud.Comment: 14 pages, including 1 figure and 2 Table
Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the Herschel space observatory
HCl and HF are expected to be the main reservoirs of fluorine and chlorine
wherever hydrogen is predominantly molecular. They are found to be strongly
depleted in dense molecular clouds, suggesting freeze-out onto grains in such
cold environments. We can then expect that HCl and HF were also the major
carriers of Cl and F in the gas and icy phases of the outer solar nebula, and
were incorporated into comets. We aimed to measure the HCl and HF abundances in
cometary ices as they can provide insights on the halogen chemistry in the
early solar nebula. We searched for the J(1-0) lines of HCl and HF at 626 and
1232 GHz, respectively, using the HIFI instrument on board the Herschel Space
Observatory. HCl was searched for in comets 103P/Hartley 2 and C/2009 P1
(Garradd), whereas observations of HF were conducted in comet C/2009 P1. In
addition, observations of HO and HO lines were performed in C/2009
P1 to measure the HO production rate. Three lines of CHOH were
serendipitously observed in the HCl receiver setting. HCl is not detected,
whereas a marginal (3.6-) detection of HF is obtained. The upper limits
for the HCl abundance relative to water are 0.011% and 0.022%, for 103P and
C/2009 P1, respectively, showing that HCl is depleted with respect to the solar
Cl/O abundance by a factor more than 6 in 103P, where the error is
related to the uncertainty in the chlorine solar abundance. The marginal HF
detection obtained in C/2009 P1 corresponds to an HF abundance relative to
water of (1.80.5) 10, which is approximately consistent
with a solar photospheric F/O abundance. The observed depletion of HCl suggests
that HCl was not the main reservoir of chlorine in the regions of the solar
nebula where these comets formed. HF was possibly the main fluorine compound in
the gas phase of the outer solar nebula.Comment: Accepted for publication in Astronomy & Astrophysic
The Composition of Comets
This paper is the result of the International Cometary Workshop, held in
Toulouse, France in April 2014, where the participants came together to assess
our knowledge of comets prior to the ESA Rosetta Mission. In this paper, we
look at the composition of the gas and dust from the comae of comets. With the
gas, we cover the various taxonomic studies that have broken comets into groups
and compare what is seen at all wavelengths. We also discuss what has been
learned from mass spectrometers during flybys. A few caveats for our
interpretation are discussed. With dust, much of our information comes from
flybys. They include {\it in situ} analyses as well as samples returned to
Earth for laboratory measurements. Remote sensing IR observations and
polarimetry are also discussed. For both gas and dust, we discuss what
instruments the Rosetta spacecraft and Philae lander will bring to bear to
improve our understanding of comet 67P/Churyumov-Gerasimenko as "ground-truth"
for our previous comprehensive studies. Finally, we summarize some of the
initial Rosetta Mission findings.Comment: To appear in Space Science Review
- …
