1,960 research outputs found

    Period spacings in red giants II. Automated measurement

    Full text link
    The space missions CoRoT and Kepler have provided photometric data of unprecedented quality for asteroseismology. A very rich oscillation pattern has been discovered for red giants, including mixed modes that are used to decipher the red giants interiors. They carry information on the radiative core of red giant stars and bring strong constraints on stellar evolution. Since more than 15,000 red giant light curves have been observed by Kepler, we have developed a simple and efficient method for automatically characterizing the mixed-mode pattern and measuring the asymptotic period spacing. With the asymptotic expansion of the mixed modes, we have revealed the regularity of the gravity-mode pattern. The stretched periods were used to study the evenly space periods with a Fourier analysis and to measure the gravity period spacing, even when rotation severely complicates the oscillation spectra. We automatically measured gravity period spacing for more than 6,100 Kepler red giants. The results confirm and extend previous measurements made by semi-automated methods. We also unveil the mass and metallicity dependence of the relation between the frequency spacings and the period spacings for stars on the red giant branch. The delivery of thousands of period spacings combined with all other seismic and non-seismic information provides a new basis for detailed ensemble asteroseismology.Comment: 13 pages, 13 figure

    On detecting the large separation in the autocorrelation of stellar oscillation times series

    Full text link
    The observations carried out by the space missions CoRoT and Kepler provide a large set of asteroseismic data. Their analysis requires an efficient procedure first to determine if the star is reliably showing solar-like oscillations, second to measure the so-called large separation, third to estimate the asteroseismic information that can be retrieved from the Fourier spectrum. We develop in this paper a procedure, based on the autocorrelation of the seismic Fourier spectrum. We have searched for criteria able to predict the output that one can expect from the analysis by autocorrelation of a seismic time series. First, the autocorrelation is properly scaled for taking into account the contribution of white noise. Then, we use the null hypothesis H0 test to assess the reliability of the autocorrelation analysis. Calculations based on solar and CoRoT times series are performed in order to quantify the performance as a function of the amplitude of the autocorrelation signal. We propose an automated determination of the large separation, whose reliability is quantified by the H0 test. We apply this method to analyze a large set of red giants observed by CoRoT. We estimate the expected performance for photometric time series of the Kepler mission. Finally, we demonstrate that the method makes it possible to distinguish l=0 from l=1 modes. The envelope autocorrelation function has proven to be very powerful for the determination of the large separation in noisy asteroseismic data, since it enables us to quantify the precision of the performance of different measurements: mean large separation, variation of the large separation with frequency, small separation and degree identification.Comment: A&A, in pres

    Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations

    Full text link
    The space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. We used a grid of these simulations computed with the CO5^5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax\nu_{\rm max}.Comment: 11 pages, 14 figures, 4 tables; accepted for publication in Astronomy & Astrophysic

    Theoretical power spectra of mixed modes in low mass red giant stars

    Full text link
    CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes

    Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler

    Full text link
    We report for the first time a parametric fit to the pattern of the \ell = 1 mixed modes in red giants, which is a powerful tool to identify gravity-dominated mixed modes. With these modes, which share the characteristics of pressure and gravity modes, we are able to probe directly the helium core and the surrounding shell where hydrogen is burning. We propose two ways for describing the so-called mode bumping that affects the frequencies of the mixed modes. Firstly, a phenomenological approach is used to describe the main features of the mode bumping. Alternatively, a quasi-asymptotic mixed-mode relation provides a powerful link between seismic observations and the stellar interior structure. We used period \'echelle diagrams to emphasize the detection of the gravity-dominated mixed modes. The asymptotic relation for mixed modes is confirmed. It allows us to measure the gravity-mode period spacings in more than two hundred red giant stars. The identification of the gravity-dominated mixed modes allows us to complete the identification of all major peaks in a red giant oscillation spectrum, with significant consequences for the true identification of \ell = 3 modes, of \ell = 2 mixed modes, for the mode widths and amplitudes, and for the \ell = 1 rotational splittings. The accurate measurement of the gravity-mode period spacing provides an effective probe of the inner, g-mode cavity. The derived value of the coupling coefficient between the cavities is different for red giant branch and clump stars. This provides a probe of the hydrogen-shell burning region that surrounds the helium core. Core contraction as red giants ascend the red giant branch can be explored using the variation of the gravity-mode spacing as a function of the mean large separation.Comment: Accepted in A&

    Asteroseismic surface gravity for evolved stars

    Get PDF
    Context: Asteroseismic surface gravity values can be of importance in determining spectroscopic stellar parameters. The independent log(g) value from asteroseismology can be used as a fixed value in the spectroscopic analysis to reduce uncertainties due to the fact that log(g) and effective temperature can not be determined independently from spectra. Since 2012, a combined analysis of seismically and spectroscopically derived stellar properties is ongoing for a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any potential biases and uncertainties in asteroseismic log(g) values is now becoming important. Aims: The seismic parameter needed to derive log(g) is the frequency of maximum oscillation power (nu_max). Here, we investigate the influence of nu_max derived with different methods on the derived log(g) values. The large frequency separation between modes of the same degree and consecutive radial orders (Dnu) is often used as an additional constraint for the determination of log(g). Additionally, we checked the influence of small corrections applied to Dnu on the derived values of log(g). Methods We use methods extensively described in the literature to determine nu_max and Dnu together with seismic scaling relations and grid-based modeling to derive log(g). Results: We find that different approaches to derive oscillation parameters give results for log(g) with small, but different, biases for red-clump and red-giant-branch stars. These biases are well within the quoted uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to the Dnu scaling relation have no significant effect on log(g). However somewhat unexpectedly, method specific solar reference values induce biases of the order of the uncertainties, which is not the case when canonical solar reference values are used.Comment: 8 pages, 5 figures, accepted for publication by A&

    Period spacings in red giants I. Disentangling rotation and revealing core structure discontinuities

    Full text link
    Asteroseismology allows us to probe the physical conditions inside the core of red giant stars. This relies on the properties of the global oscillations with a mixed character that are highly sensitive to the physical properties of the core. However, overlapping rotational splittings and mixed-mode spacings result in complex structures in the mixed-mode pattern, which severely complicates its identification and the measurement of the asymptotic period spacing. This work aims at disentangling the rotational splittings from the mixed-mode spacings, in order to open the way to a fully automated analysis of large data sets. An analytical development of the mixed-mode asymptotic expansion is used to derive the period spacing between two consecutive mixed modes. The \'echelle diagrams constructed with the appropriately stretched periods are used to exhibit the structure of the gravity modes and of the rotational splittings. We propose a new view on the mixed-mode oscillation pattern based on corrected periods, called stretched periods, that mimic the evenly spaced gravity-mode pattern. This provides a direct understanding of all oscillation components, even in the case of rapid rotation. The measurement of the asymptotic period spacing and the signature of the structural glitches on mixed modes are then made easy. This work opens the possibility to derive all seismic global parameters in an automated way, including the identification of the different rotational multiplets and the measurement of the rotational splitting, even when this splitting is significantly larger than the period spacing. Revealing buoyancy glitches provides a detailed view on the radiative core.Comment: Accepted in A&

    Short-lived spots in solar-like stars as observed by CoRoT

    Full text link
    Context. CoRoT light curves have an unprecedented photometric quality, having simultaneously a high signal-to-noise ratio, a long time span and a nearly continuous duty-cycle. Aims. We analyse the light-curves of four bright targets observed in the seismology field and study short-lived small spots in solar-like stars. Methods. We present a simple spot modeling by iterative analysis. Its ability to extract relevant parameters is ensured by implementing relaxation steps to avoid convergence to local minima of the sum of the residuals between observations and modeling. The use of Monte-Carlo simulations allows us to estimate the performance of the fits. Results. Our starspot modeling gives a representation of the spots on these stars in agreement with other well tested methods. Within this framework, parameters such as rigid-body rotation and spot lifetimes seem to be precisely determined. Then, the lifetime/rotation period ratios are in the range 0.5 - 2, and there is clear evidence for differential rotation.Comment: 11 pages Accepted in A&

    Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars

    Full text link
    The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating 1.8±0.31.8\pm0.3 to 3.2±1.03.2\pm1.0 times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&
    corecore