194 research outputs found
Using PVS for Interval Temporal Logic proofs, part 1: The syntactic and semantic encoding
Interval temporal logic (ITL) is a logic that is used to specify and reason about systems. The logic has a powerful proof system but rather than doing proofs by hand, which is tedious and error prone, we want a tool that can check each proof step. Instead of developing a new tool we will use the existing prototype verification system (PVS) as a basic tool. The specification language of PVS is used to encode interval temporal logic semantically and syntactically. With this we can encode the ITL proof system within PVS. Several examples of proofs in ITL that are done per hand are checked with PVS.Funded by EPSRC Research Grant GR/K2592
A timeband framework for modelling real-time systems
Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper
Moments of Inertia of Nuclei in the Rare Earth Region: A Relativistic versus Non-Relativistic Investigation
A parameter free investigation of the moments of inertia of ground state
rotational bands in well deformed rare-earth nuclei is carried out using
Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked
Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic
fields are determined by the non-linear Lagrangian with the NL1 force and the
pairing interaction by the central part of finite range Gogny D1S force. In
CHFB theory, the properties in particle-hole and particle-particle channels are
defined solely by Gogny D1S forces. Using an approximate particle number
projection before variation by means of the Lipkin Nogami method improves the
agreement with the experimental data, especially in CRHB theory. The effect of
the particle number projection on the moments of inertia and pairing energies
is larger in relativistic than in non-relativistic theory.Comment: 18 pages + 2 PostScript figure
Relativistic quantum transport theory of hadronic matter: the coupled nucleon, delta and pion system
We derive the relativistic quantum transport equation for the pion
distribution function based on an effective Lagrangian of the QHD-II model. The
closed time-path Green's function technique, the semi-classical, quasi-particle
and Born approximation are employed in the derivation. Both the mean field and
collision term are derived from the same Lagrangian and presented analytically.
The dynamical equation for the pions is consistent with that for the nucleons
and deltas which we developed before. Thus, we obtain a relativistic transport
model which describes the hadronic matter with , and degrees
of freedom simultaneously. Within this approach, we investigate the medium
effects on the pion dispersion relation as well as the pion absorption and pion
production channels in cold nuclear matter. In contrast to the results of the
non-relativistic model, the pion dispersion relation becomes harder at low
momenta and softer at high momenta as compared to the free one, which is mainly
caused by the relativistic kinetics. The theoretically predicted free cross section is in agreement with the experimental data. Medium
effects on the cross section and momentum-dependent
-decay width are shown to be substantial.Comment: 66 pages, Latex, 12 PostScript figures included; replaced by the
revised version, to appear in Phys. Rev.
Compositional modelling: The formal perspective
We provide a formal framework within which an Information System (IS) could be modelled, analysed, and verified in a compositional manner. Our work is based on Interval Temporal Logic (ITL) and its programming language subset, Tempura. This is achieved by considering IS, of an enterprise, as a class of reactive systems in which it is continually reacting to asynchronously occurring events within a given period of time. Such a reactive nature permits an enterprise to pursue its business activities to best compete with others in the market place. The technique is illustrated by applying it to a small case study from Public Service Systems (PSS).Funding received from the UK Engineering and Physical Sciences Research Council (EPSRC) through the Research Grant GR/M/0258
Developmental perspectives on interpersonal affective touch
In the last decade, philosophy, neuroscience and psychology alike have paid increasing attention to the study of interpersonal affective touch, which refers to the emotional and motivational facets of tactile sensation. Some aspects of affective touch have been linked to a neurophysiologically specialised system, namely the C tactile (CT) system. While the role of this sys-tem for affiliation, social bonding and communication of emotions have been widely investigated, only recently researchers have started to focus on the potential role of interpersonal affective touch in acquiring awareness of the body as our own, i.e. as belonging to our psychological ‘self’. We review and discuss recent developmental and adult findings, pointing to the central role of interpersonal affective touch in body awareness and social cognition in health and disorders. We propose that interpersonal affective touch, as an interoceptive modality invested of a social nature, can uniquely contribute to the ongoing debate in philosophy about the primacy of the relational nature of the minimal self
- …
