521 research outputs found

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p

    Differentiation of an additive interval measure with values in a conjugate Banach space

    Get PDF
    We present a complete characterization of finitely additive interval measures with values in conjugate Banach spaces which can be represented as Henstock-Kurzweil-Gelfand integrals. If the range space has the weak Radon-Nikodym property (WRNP), then we precisely describe when these integrals are in fact Henstock-Kurzweil-Pettis integrals

    Corticosterone alters materno-fetal glucose partitioning and insulin signalling in pregnant mice.

    Get PDF
    Glucocorticoids affect glucose metabolism in adults and fetuses, although their effects on materno-fetal glucose partitioning remain unknown. The present study measured maternal hepatic glucose handling and placental glucose transport together with insulin signalling in these tissues in mice drinking corticosterone either from day (D) 11 to D16 or D14 to D19 of pregnancy (term = D21). On the final day of administration, corticosterone-treated mice were hyperinsulinaemic (P 0.05). Insulin receptor and insulin-like growth factor type I receptor abundance did not differ with treatment in either tissue. Corticosterone upregulated the stress-inducible mechanistic target of rapamycin (mTOR) suppressor, Redd1, in liver (D16 and D19) and placenta (D19), in ad libitum fed animals (P < 0.05). Concomitantly, hepatic protein content and placental weight were reduced on D19 (P < 0.05), in association with altered abundance and/or phosphorylation of signalling proteins downstream of mTOR. Taken together, the data indicate that maternal glucocorticoid excess reduces fetal growth partially by altering placental glucose transport and mTOR signalling.The studies described in this manuscript were supported by a graduate studentship to ORV from the Centre for Trophoblast Research in Cambridge.This is the accepted manuscript of a paper published in The Journal of Physiology Volume 593, Issue 5, pages 1307–1321, 1 March 2015, DOI: 10.1113/jphysiol.2014.28717

    Change point detection in social networksCritical review with experiments

    Full text link
    © 2018 Elsevier Inc. Change point detection in social networks is an important element in developing the understanding of dynamic systems. This complex and growing area of research has no clear guidelines on what methods to use or in which circumstances. This paper critically discusses several possible network metrics to be used for a change point detection problem and conducts an experimental, comparative analysis using the Enron and MIT networks. Bayesian change point detection analysis is conducted on different global graph metrics (Size, Density, Average Clustering Coefficient, Average Shortest Path) as well as metrics derived from the Hierarchical and Block models (Entropy, Edge Probability, No. of Communities, Hierarchy Level Membership). The results produced the posterior probability of a change point at weekly time intervals that were analysed against ground truth change points using precision and recall measures. Results suggest that computationally heavy generative models offer only slightly better results compared to some of the global graph metrics. The simplest metrics used in the experiments, i.e. nodes and links numbers, are the recommended choice for detecting overall structural changes

    Directed closure coefficient and its patterns.

    Full text link
    The triangle structure, being a fundamental and significant element, underlies many theories and techniques in studying complex networks. The formation of triangles is typically measured by the clustering coefficient, in which the focal node is the centre-node in an open triad. In contrast, the recently proposed closure coefficient measures triangle formation from an end-node perspective and has been proven to be a useful feature in network analysis. Here, we extend it by proposing the directed closure coefficient that measures the formation of directed triangles. By distinguishing the direction of the closing edge in building triangles, we further introduce the source closure coefficient and the target closure coefficient. Then, by categorising particular types of directed triangles (e.g., head-of-path), we propose four closure patterns. Through multiple experiments on 24 directed networks from six domains, we demonstrate that at network-level, the four closure patterns are distinctive features in classifying network types, while at node-level, adding the source and target closure coefficients leads to significant improvement in link prediction task in most types of directed networks

    Towards Digital Twin-Oriented Complex Networked Systems: Introducing heterogeneous node features and interaction rules.

    Get PDF
    This study proposes an extendable modelling framework for Digital Twin-Oriented Complex Networked Systems (DT-CNSs) with a goal of generating networks that faithfully represent real-world social networked systems. Modelling process focuses on (i) features of nodes and (ii) interaction rules for creating connections that are built based on individual node's preferences. We conduct experiments on simulation-based DT-CNSs that incorporate various features and rules about network growth and different transmissibilities related to an epidemic spread on these networks. We present a case study on disaster resilience of social networks given an epidemic outbreak by investigating the infection occurrence within specific time and social distance. The experimental results show how different levels of the structural and dynamics complexities, concerned with feature diversity and flexibility of interaction rules respectively, influence network growth and epidemic spread. The analysis revealed that, to achieve maximum disaster resilience, mitigation policies should be targeted at nodes with preferred features as they have higher infection risks and should be the focus of the epidemic control

    Network disruption via continuous batch removal: The case of Sicilian Mafia.

    Get PDF
    Network disruption is pivotal in understanding the robustness and vulnerability of complex networks, which is instrumental in devising strategies for infrastructure protection, epidemic control, cybersecurity, and combating crime. In this paper, with a particular focus on disrupting criminal networks, we proposed to impose a within-the-largest-connected-component constraint in a continuous batch removal disruption process. Through a series of experiments on a recently released Sicilian Mafia network, we revealed that the constraint would enhance degree-based methods while weakening betweenness-based approaches. Moreover, based on the findings from the experiments using various disruption strategies, we propose a structurally-filtered greedy disruption strategy that integrates the effectiveness of greedy-like methods with the efficiency of structural-metric-based approaches. The proposed strategy significantly outperforms the longstanding state-of-the-art method of betweenness centrality while maintaining the same time complexity

    Adaptive community detection incorporating topology and content in social networks<sup>✰</sup>

    Full text link
    © 2018 In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks’ topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non-negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed

    Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviors that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal to noise ratio (SNR) in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging whilst operating within a helicopter gearbox. In addition, this paper investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and Acoustic Emissions (AE). It compares their effectiveness for various operating conditions. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using AE for helicopter gearbox monitoring
    corecore