562 research outputs found
Direct Kerr-frequency-comb atomic spectroscopy
Microresonator-based soliton frequency combs - microcombs - have recently
emerged to offer low-noise, photonic-chip sources for optical measurements.
Owing to nonlinear-optical physics, microcombs can be built with various
materials and tuned or stabilized with a consistent framework. Some
applications require phase stabilization, including optical-frequency synthesis
and measurements, optical-frequency division, and optical clocks. Partially
stabilized microcombs can also benefit applications, such as oscillators,
ranging, dual-comb spectroscopy, wavelength calibration, and optical
communications. Broad optical bandwidth, brightness, coherence, and frequency
stability have made frequency-comb sources important for studying comb-matter
interactions with atoms and molecules. Here, we explore direct microcomb atomic
spectroscopy, utilizing a cascaded, two-photon 1529-nm atomic transition of
rubidium. Both the microcomb and the atomic vapor are implemented with planar
fabrication techniques to support integration. By fine and simultaneous control
of the repetition rate and carrier-envelope-offset frequency of the soliton
microcomb, we obtain direct sub-Doppler and hyperfine spectroscopy of the
manifold. Moreover, the entire set of microcomb modes are
stabilized to this atomic transition, yielding absolute optical-frequency
fluctuations of the microcomb at the kilohertz-level over a few seconds and < 1
MHz day-to-day accuracy. Our work demonstrates atomic spectroscopy with
microcombs and provides a rubidium-stabilized microcomb laser source, operating
across the 1550 nm band for sensing, dimensional metrology, and communication.Comment: 5 pages, 3 figure
Quantum diffusion of microcavity solitons
Coherently pumped (Kerr) solitons in an ideal optical microcavity are expected to undergo random quantum motion that determines fundamental performance limits in applications of the soliton microcombs. Here this random walk and its impact on Kerr soliton timing jitter are studied experimentally. The quantum limit is discerned by measuring the relative position of counter-propagating solitons. Their relative motion features weak interactions and also presents common-mode suppression of technical noise, which typically hides the quantum fluctuations. This is in contrast to co-propagating solitons, which are found to have relative timing jitter well below the quantum limit of a single soliton on account of strong correlation of their mutual motion. Good agreement is found between theory and experiment. The results establish the fundamental limits to timing jitter in soliton microcombs and provide new insights on multisoliton physics
Application of homogeneous potentials for the modeling of the Bauschinger effects in ultra low carbon steel
In this work, an approach is proposed for the description of the plastic behavior of materials subjected to multiple or continuous strain path changes. In particular, although it is not formulated with a kinematic hardening rule, it provides a reasonable description of the Bauschinger effect when loading is reversed. This description of anisotropic hardening is based on homogeneous yield functions/plastic potentials combining a stable, isotropic hardening-type, component and a fluctuating component. The capability of this constitutive description is illustrated with applications on an ultra low carbon steel sheet sample deformed in three-stage uniaxial loading with two load reversals [1].ope
Schoolwide Application of Positive Behavior Support in an Urban High School:. Journal Of Positive Behavior Interventions
Abstract: The nuances of the application of schoolwide positive behavior supports (PBS) in an urban high school setting were investigated. Impact of implementation was measured using qualitative interviews and observations, including the School-wide Evaluation Tool (SET), Effective Behavior Support Survey, Student Climate Survey, and office disciplinary referrals. The results indicated that schoolwide PBS was implemented in an urban high school setting with some success. The overall level of implementation of PBS reached 80% as measured by the SET. Staff and teachers increased their level of perceived priority for implementing PBS in their school. A decrease in monthly discipline referrals to the office and the proportion of students who required secondary and tertiary supports was noted. These findings seem to indicate that PBS may be an important process for improving outcomes for teachers and students in urban high school settings
Searching for Exoplanets Using a Microresonator Astrocomb
Detection of weak radial velocity shifts of host stars induced by orbiting
planets is an important technique for discovering and characterizing planets
beyond our solar system. Optical frequency combs enable calibration of stellar
radial velocity shifts at levels required for detection of Earth analogs. A new
chip-based device, the Kerr soliton microcomb, has properties ideal for
ubiquitous application outside the lab and even in future space-borne
instruments. Moreover, microcomb spectra are ideally suited for astronomical
spectrograph calibration and eliminate filtering steps required by conventional
mode-locked-laser frequency combs. Here, for the calibration of astronomical
spectrographs, we demonstrate an atomic/molecular line-referenced,
near-infrared soliton microcomb. Efforts to search for the known exoplanet HD
187123b were conducted at the Keck-II telescope as a first in-the-field
demonstration of microcombs
Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium
The primary concern of this work is to study the emission characteristics of a series of chiral nematic liquid crystal lasers doped with different laser dyes (DCM, pyrromethene 580, and pyrromethene 597) at varying concentrations by weight (0.5-2 wt %) when optically pumped at 532 nm. Long-wavelength photonic band-edge laser emission is characterized in terms of threshold energy and slope efficiency. At every dye concentration investigated, the pyrromethene 597-doped lasers exhibit the highest slope efficiency (ranging from 15% to 32%) and the DCM-doped lasers the lowest (ranging from 5% to 13%). Similarly, the threshold was found to be, in general, higher for the DCM-doped laser samples in comparison to the pyrromethene-doped laser samples. These results are then compared with the spectral properties, quantum efficiencies and, where possible, fluorescence lifetimes of the dyes dispersed in a common nematic host. In accordance with the low thresholds and high slope efficiencies, the results show that the molar extinction coefficients and quantum efficiencies are considerably larger for the pyrromethene dyes in comparison to DCM, when dispersed in the liquid crystal host.open191
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
A mirror fusion device for advanced space propulsion
An open‐ended fusion device with a magnetic mirror geometry is examined as a potential propulsion system that may be achievable with present day or near term technology. The plasma in such a device will be sufficiently dense to make the collision mean free path much smaller than the length of the system, thereby acquiring a confinement property which is significantly different from its terrestrial power‐reactor counterpart. It is shown that such a system is capable of producing well over a hundred thousand seconds of specific impulse and tens of kilonewtons of thrust—a capability that would allow a massive rocket to make a round trip to Mars in about four months. © 1995 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87468/2/421_1.pd
Fission-assisted or self-sustaining gasdynamic mirror propulsion system
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77108/1/AIAA-1996-3066-813.pd
- …
