10,448 research outputs found
International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach
This paper develops a non-Bayesian methodology to analyze the time-varying
structure of international linkages and market efficiency in G7 countries. We
consider a non-Bayesian time-varying vector autoregressive (TV-VAR) model, and
apply it to estimate the joint degree of market efficiency in the sense of Fama
(1970, 1991). Our empirical results provide a new perspective that the
international linkages and market efficiency change over time and that their
behaviors correspond well to historical events of the international financial
system.Comment: 21 pages, 2 tables, 6 figure
Cd3As2 is Centrosymmetric
This is a revised version of a manuscript that was originally posted here in
February of 2014. It has been accepted at the journal Inorganic Chemistry after
reviews that included those of two crystallographers who made sure all the t's
were crossed and the i's were dotted. The old work (from 1968) that said that
Cd3As2 was noncentrosymmetric was mistaken, with the authors of that study
making a type of error that in the 1980s became infamous in crystallography. As
a result of the increased scrutiny of the issue of centrosymmetricity of the
1980's, there are now much better analysis tools to resolve the issue fully,
and its important to understand that not just our crystals are centrosymmetric,
even the old guy's crystals were centrosymmetric (and by implication everyone's
are). There is no shame in having made that error back in the day and those
authors would not find the current centrosymmetric result controversial; their
paper is excellent in all other aspects. This manuscript describes how the
structure is determined, explains the structure schematically, calculates the
electronic structure based on the correct centrosymmetric crystal structure,
and gives the structural details that should be used for future analysis and
modeling.Comment: Accepted by ACS Inorganic Chemistr
Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses
We consider interacting electrons in a two-dimensional quantum Coulomb glass
and investigate by means of the Hartree-Fock approximation the combined effects
of the electron-electron interaction and the transverse magnetic field on
fluctuations of the inverse compressibility. Preceding systematic study of the
system in the absence of the magnetic field identifies the source of the
fluctuations, interplay of disorder and interaction, and effects of hopping.
Revealed in sufficiently clean samples with strong interactions is an unusual
right-biased distribution of the inverse compressibility, which is neither of
the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic
fields tend to suppress fluctuations, in relatively clean samples with weak
interactions fluctuations are found to grow with the magnetic field. This is
attributed to the localization properties of the electron states, which may be
measured by the participation ratio and the inverse participation number. It is
also observed that at the frustration where the Fermi level is degenerate,
localization or modulation of electrons is enhanced, raising fluctuations.
Strong frustration in general suppresses effects of the interaction on the
inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.
Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy
We have performed x-ray absorption spectroscopy (XAS) measurements on a
series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2,
Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line"
features observed at the Ir L2 and L3 absorption edges, it is possible to
extract valuable information about the strength of the spin-orbit coupling in
these systems. We observe remarkably large, non-statistical branching ratios in
all Ir compounds studied, with little or no dependence on chemical composition,
crystal structure, or electronic state. This result confirms the presence of
strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3,
and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and
IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d
compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching
ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure
In vivo anomalous diffusion and weak ergodicity breaking of lipid granules
Combining extensive single particle tracking microscopy data of endogenous
lipid granules in living fission yeast cells with analytical results we show
evidence for anomalous diffusion and weak ergodicity breaking. Namely we
demonstrate that at short times the granules perform subdiffusion according to
the laws of continuous time random walk theory. The associated violation of
ergodicity leads to a characteristic turnover between two scaling regimes of
the time averaged mean squared displacement. At longer times the granule motion
is consistent with fractional Brownian motion.Comment: 4 pages, 4 figures, REVTeX. Supplementary Material. Physical Review
Letters, at pres
The local symmetries of M-theory and their formulation in generalised geometry
In the doubled field theory approach to string theory, the T-duality group is
promoted to a manifest symmetry at the expense of replacing ordinary Riemannian
geometry with generalised geometry on a doubled space. The local symmetries are
then given by a generalised Lie derivative and its associated algebra. This
paper constructs an analogous structure for M-theory. A crucial by-product of
this is the derivation of the physical section condition for M-theory
formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
Condensation and Clustering in the Driven Pair Exclusion Process
We investigate particle condensation in a driven pair exclusion process on
one- and two- dimensional lattices under the periodic boundary condition. The
model describes a biased hopping of particles subject to a pair exclusion
constraint that each particle cannot stay at a same site with its pre-assigned
partner. The pair exclusion causes a mesoscopic condensation characterized by
the scaling of the condensate size and the number of
condensates with the total number of sites .
Those condensates are distributed randomly without hopping bias. We find that
the hopping bias generates a spatial correlation among condensates so that a
cluster of condensates appears. Especially, the cluster has an anisotropic
shape in the two-dimensional system. The mesoscopic condensation and the
clustering are studied by means of numerical simulations.Comment: 4 pages, 5 figure
Nonequilibrium perturbation theory for spin-1/2 fields
A partial resummation of perturbation theory is described for field theories
containing spin-1/2 particles in states that may be far from thermal
equilibrium. This allows the nonequilibrium state to be characterized in terms
of quasiparticles that approximate its true elementary excitations. In
particular, the quasiparticles have dispersion relations that differ from those
of free particles, finite thermal widths and occupation numbers which, in
contrast to those of standard perturbation theory evolve with the changing
nonequilibrium environment. A description of this kind is essential for
estimating the evolution of the system over extended periods of time. In
contrast to the corresponding description of scalar particles, the structure of
nonequilibrium fermion propagators exhibits features which have no counterpart
in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.
Classification of non-Riemannian doubled-yet-gauged spacetime
Assuming covariant fields as the `fundamental' variables,
Double Field Theory can accommodate novel geometries where a Riemannian metric
cannot be defined, even locally. Here we present a complete classification of
such non-Riemannian spacetimes in terms of two non-negative integers,
, . Upon these backgrounds, strings become
chiral and anti-chiral over and directions respectively, while
particles and strings are frozen over the directions. In
particular, we identify as Riemannian manifolds, as
non-relativistic spacetime, as Gomis-Ooguri non-relativistic string,
as ultra-relativistic Carroll geometry, and as Siegel's
chiral string. Combined with a covariant Kaluza-Klein ansatz which we further
spell, leads to Newton-Cartan gravity. Alternative to the conventional
string compactifications on small manifolds, non-Riemannian spacetime such as
, may open a new scheme of the dimensional reduction from ten to
four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in
(2.51) correcte
Chaotic flow and efficient mixing in a micro-channel with a polymer solution
Microscopic flows are almost universally linear, laminar and stationary
because Reynolds number, , is usually very small. That impedes mixing in
micro-fluidic devices, which sometimes limits their performance. Here we show
that truly chaotic flow can be generated in a smooth micro-channel of a uniform
width at arbitrarily low , if a small amount of flexible polymers is added
to the working liquid. The chaotic flow regime is characterized by randomly
fluctuating three-dimensional velocity field and significant growth of the flow
resistance. Although the size of the polymer molecules extended in the flow may
become comparable with the micro-channel width, the flow behavior is fully
compatible with that in a table-top channel in the regime of elastic
turbulence. The chaotic flow leads to quite efficient mixing, which is almost
diffusion independent. For macromolecules, mixing time in this microscopic flow
can be three to four orders of magnitude shorter than due to molecular
diffusion.Comment: 8 pages,7 figure
- …
