914 research outputs found
Potential of interferon-γ-inducible protein 10 in improving tuberculosis diagnosis in HIV-infected patients
The use of combined heart rate response and accelerometry to assess the level and predictors of physical activity in tuberculosis patients in Tanzania
We assessed the role of tuberculosis (TB) disease and HIV infection on the level of physical activity. A combined heart rate and movement sensor was used to assess habitual physical activity in TB patients and non-TB controls. The association between sputum-negative TB, sputum-positive TB, HIV and physical activity estimates were assessed in multivariable linear regression models adjusted for age, sex, haemoglobin and alpha-1-Acid glycoprotein (AGP). Sputum-positive [e B 0·43, 95% confidence interval (CI) 0·29-0·64] and sputum-negative (e B 0·67, 95% CI 0·47-0·94) TB as well as HIV infection (e B 0·59, 95% CI 0·46-0·75) were associated with reduced activity compared to controls. Anaemia accounted for a substantial part of the effects of HIV, while elevated AGP primarily mediated the TB effect. The level of physical activity is highly influenced by TB and HIV, and mainly mediated through anaemia of infection and associated with elevated acute phase response.</p
Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets
We present a general theory for the intermediate temperature (T) properties
of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp
even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev,
cond-mat/9711014), we argue that an integrable, classical, continuum model of a
fixed-length, 3-vector applies over an intermediate temperature range; this
range becomes very wide for moderate and large values of 2Sp. The coupling
constants of the effective model are known exactly in terms of the energy gap
above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd).
Analytic and numeric results for dynamic and transport properties are obtained,
including some exact results for the spin-wave damping. Numerous quantitative
predictions for neutron scattering and NMR experiments are made. A general
discussion on the nature of T>0 transport in integrable systems is also
presented: an exact solution of a toy model proves that diffusion can exist in
integrable systems, provided proper care is taken in approaching the
thermodynamic limit.Comment: 38 pages, including 12 figure
Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation
Electronic Raman scattering in YBCO and other superconducting cuprates
Superconductivity induced structures in the electronic Raman spectra of
high-Tc superconductors are computed using the results of ab initio LDA-LMTO
three-dimensional band structure calculations via numerical integrations of the
mass fluctuations, either in the whole 3D Brillouin zone or limiting the
integrations to the Fermi surface. The results of both calculations are rather
similar, the Brillouin zone integration yielding additional weak structures
related to the extended van Hove singularities. Similar calculations have been
performed for the normal state of these high-Tc cuprates. Polarization
configurations have been investigated and the results have been compared to
experimental spectra. The assumption of a simple d_(x^2-y^2)-like gap function
allows us to explain a number of experimental features but is hard to reconcile
with the relative positions of the A1g and B1g peaks.Comment: 14 pages, LaTeX (RevTeX), 5 PostScript figures, uses multicol.sty,
submitted to PR
Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model
The equilibrium structure, energy bands, phonon dispersions, and s- and
d-channel electron-phonon interactions (EPIs) are calculated for the
infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA
and the linear-response full-potential LMTO method were used. In the
equilibrium structure, oxygen is found to buckle slightly out of the plane and,
as a result, the characters of the energy bands near EF are found to be similar
to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in
accord with previous LDA calculations for YBa2Cu3O7. This supports the common
belief that the EPI mechanism alone is insufficient to explain HTSC.
Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This
is surprising and indicates that the EPI could enhance some other d-wave
pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute
significantly to the EPI, although these contributions are proportional to the
static buckling and would vanish for flat planes. These numerical results can
be understood from a generic tight-binding model originally derived from the
LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the
buckling-modes and the influence of the spin-fluctuations should be
investigated.Comment: 19 pages, 9 Postscript figures, Late
Diabetes is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania.
Diabetes and TB are associated, and diabetes is increasingly common in low-income countries where tuberculosis (TB) is highly endemic. However, the role of diabetes for TB has not been assessed in populations where HIV is prevalent. A case-control study was conducted in an urban population in Tanzania among culture-confirmed pulmonary TB patients and non-TB neighbourhood controls. Participants were tested for diabetes according to WHO guidelines and serum concentrations of acute phase reactants were measured. The association between diabetes and TB, and the role of HIV as an effect modifier, were examined using logistic regression. Since blood glucose levels increase during the acute phase response, we adjusted for elevated serum acute phase reactants. Among 803 cases and 350 controls the mean (SD) age was 34.8 (11.9) and 33.8 (12.0) years, and the prevalence of diabetes was 16.7% (95% CI: 14.2; 19.4) and 9.4% (6.6; 13.0), respectively. Diabetes was associated with TB (OR 2.2, 95% CI: 1.5; 3.4, p<0.001). However, the association depended on HIV status (interaction, p = 0.01) due to a stronger association among HIV uninfected (OR 4.2, 95% CI: 1.5; 11.6, p = 0.01) compared to HIV infected (OR 0.1, 95% CI: 0.01; 1.8, p = 0.13) after adjusting for age, sex, demographic factors and elevated serum acute phase reactants. Diabetes is a risk factor for TB in HIV uninfected, whereas the association in HIV infected patients needs further study. The increasing diabetes prevalence may be a threat to TB control
Band-structure trend in hole-doped cuprates and correlation with Tcmax
By calculation and analysis of the bare conduction bands in a large number of
hole-doped high-temperature superconductors, we have identified the energy of
the so-called axial-orbital as the essential, material-dependent parameter. It
is uniquely related to the range of the intra-layer hopping. It controls the Cu
4s-character, influences the perpendicular hopping, and correlates with the
observed Tc at optimal doping. We explain its dependence on chemical
composition and structure, and present a generic tight-binding model.Comment: 5 pages, Latex, 5 eps figure
Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure
The macroscopic dielectric function in the random-phase-approximation without
local field effect has been implemented using the local density approximation
with an all electron, full-potential linear muffin-tin orbital basis-set. This
method is used to investigate the optical properties of the semiconductors Si,
Ge, and GaAs under hydrostatic pressure. The pressure dependence of the
effective dielectric function is compared to the experimental data of Go\~ni
and coworkers, and an excellent agreement is found when the so called
``scissors-operator'' shift (SOS) is used to account for the correct band gap
at . The effect of the semi-core states in the interband
transitions hardly changes the static dielectric function, ;
however, their contribution to the intensity of absorption for higher photon
energies is substantial. The spin-orbit coupling has a significant effect on
of Ge and GaAs, but not of Si. The peak in the
dynamical dielectric function is strongly underestimated for Si, but only
slightly for Ge and GaAs, suggesting that excitonic effects might be important
only for Si.Comment: 29 RevTex pages and 12 figs; in press in Physical Review
- …
