4,957 research outputs found
Meandering gate edges for breakdown voltage enhancement in AlGaN/GaN HEMTs
In this letter, we report on a unique device design strategy for increasing
the breakdown voltage and hence Baliga Figure of Merit (BFOM) of III-nitride
HEMTs by engineering the gate edge towards the drain. The breakdown of such
devices with meandering gate-drain access region (M-HEMT) are found to be 62%
more compared to that of conventional HEMT while the ON resistance suffers by
76%, leading to an overall improvement in the BFOM for by 28%. 3D-TCAD
simulations show that the decrease in the peak electric field at the gate edge
was responsible for increased breakdown voltage
Size-dependent electronic-transport mechanism and sign reversal of magnetoresistance in Nd0.5Sr0.5CoO3
A detailed investigation of electronic-transport properties of Nd0.5Sr0.5CoO3
has been carried out as a function of grain size ranging from micrometer order
down to an average size of 28 nm. Interestingly, we observe a size induced
metal-insulator transition in the lowest grain size sample while the bulk-like
sample is metallic in the whole measured temperature regime. An analysis of the
temperature dependent resistivity in the metallic regime reveals that the
electron-electron interaction is the dominating mechanism while other processes
like electron-magnon and electron-phonon scatterings are also likely to be
present. The fascinating observation of enhanced low temperature upturn and
minimum in resistivity on reduction of grain size is found due to
electron-electron interaction (quantum interference effect). This effect is
attributed to enhanced disorder on reduction of grain size. Interestingly, we
observed a cross over from positive to negative magnetoresistance in the low
temperature regime as the grain size is reduced. This observed sign reversal is
attributed to enhanced phase separation on decreasing the grain size of the
cobaltite
The Sunyaev-Zel'dovich Effect by Cocoons of Radio Galaxies
We estimate the deformation of the cosmic microwave background radiation by
the hot region (``cocoon'') around a radio galaxy. A simple model is adopted
for cocoon evolution while the jet is on, and a model of evolution is
constructed after the jet is off. It is found that at low redshift the phase
after the jet is off is longer than the lifetime of the jets. The Compton
y-parameter generated by cocoons is calculated with a Press-Schechter number
density evolution. The resultant value of y is of the same order as the COBE
constraint. The Sunyaev-Zeldovich effect due to cocoons could therefore be a
significant foreground source of small angular scale anisotropies in the cosmic
microwave background radiation.Comment: Published version, 23 pages with 5 figure
Antiferromagnetism of ZnVO(PO and the dilution with Ti
We report static and dynamic properties of the antiferromagnetic compound
Zn(VO)(PO), and the consequences of non-magnetic Ti
doping at the V site. P nuclear magnetic resonance (NMR) spectra
and spin-lattice relaxation rate () consistently show the formation of
the long-range antiferromagnetic order below \,K. The critical
exponent estimated from the temperature dependence of the
sublattice magnetization measured by P NMR at 9.4\,MHz is consistent
with universality classes of three-dimensional spin models. The isotropic and
axial hyperfine couplings between the P nuclei and V spins are
Oe/ and Oe/, respectively. Magnetic susceptibility
data above 6.5\,K and heat capacity data above 4.5\,K are well described by
quantum Monte-Carlo simulations for the Heisenberg model on the square lattice
with \,K. This value of is consistent with the values obtained
from the NMR shift, and electron spin resonance (ESR) intensity
analysis. Doping ZnVO(PO with non-magnetic Ti leads to a
marginal increase in the value and the overall dilution of the spin
lattice. In contrast to the recent \textit{ab initio} results, we find neither
evidence for the monoclinic structural distortion nor signatures of the
magnetic one-dimensionality for doped samples with up to 15\% of Ti. The
N\'eel temperature decreases linearly with increasing the amount of
the non-magnetic dopant.Comment: 13 pages, 12 figures, 2 table
Predictions in SU(5) Supergravity Grand Unification with Proton Stability and Relic Density Constraints
It is shown that in the physically interesting domain of the parameter space
of SU(5) supergravity GUT, the Higgs and the Z poles dominate the LSP
annihilation. Here the naive analyses on thermal averaging breaks down and
formulae are derived which give a rigorous treatment over the poles. These
results are then used to show that there exist significant domains in the
parameter space where the constraints of proton stability and cosmology are
simultaneously satisfied. New upper limits on light particle masses are
obtained.Comment: (An error in the reheating factor is corrected, strengthening the
conclusions, i.e. the region in parameter space where the relic density
constraints are satisfied is enlarged.
Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation
We carry out a comprehensive analysis of the nonminimal supersymmetric
standard model (NMSSM) with baryon and lepton number violation. We catalogue
the baryon and lepton number violating dimension four and five operators of the
model. We then study the renormalization group evolution and infrared stable
fixed points of the Yukawa couplings and the soft supersymmetry breaking
trilinear couplings of this model with baryon and lepton number (and R-parity)
violation involving the heaviest generations. We show analytically that in the
Yukawa sector of the NMSSM there is only one infrared stable fixed point. This
corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa
couplings and the violating coupling , and a trivial one
for all other couplings. All other possible fixed points are either unphysical
or unstable in the infrared region. We also carry out an analysis of the
renormalization group equations for the soft supersymmetry breaking trilinear
couplings, and determine the corresponding fixed points for these couplings. We
then study the quasi-fixed point behaviour, both of the third generation Yukawa
couplings and the baryon number violating coupling, and those of the soft
supersymmetry breaking trilinear couplings. From the analysis of the fixed
point behaviour, we obtain upper and lower bounds on the baryon number
violating coupling , as well as on the soft supersymmetry
breaking trilinear couplings. Our analysis shows that the infrared fixed point
behavior of NMSSM with baryon and lepton number violation is similar to that of
MSSM.Comment: 35 pages, Revtex, 6 eps fig
Testing Supergravity Grand Unification at Future Accelerator and Underground Experiments
The full parameter space of supergravity grand unified theory with
type proton decay is analysed using renormalization
group induced electroweak symmetry breaking under the restrictions that the
universal scalar mass and gluino mass are TeV (no extreme fine
tuning) and the Higgs triplet mass obeys . Future proton
decay experiments at SuperKamiokande or ICARUS can reach a sensitivity for the
mode of yr allowing a number of
predictions concerning the SUSY mass spectrum. Thus either the decay mode will be seen at these experiments or a
chargino of mass GeV will exist and hence be observable
at LEP2. Further, if yr,
then either the light Higgs has mass GeV or GeV i.e. either the light Higgs or the light chargino (or both) would be
observable at LEP2. Thus, the combination of future accelerator and future
underground experiments allow for strong experimental tests of this theory.Comment: 7 figures available upon request, CTP-TAMU-32/93, NUB-TH-3066/93 and
SSCL-Preprint-44
Spin correlations and exchange in square lattice frustrated ferromagnets
The J1-J2 model on a square lattice exhibits a rich variety of different
forms of magnetic order that depend sensitively on the ratio of exchange
constants J2/J1. We use bulk magnetometry and polarized neutron scattering to
determine J1 and J2 unambiguously for two materials in a new family of vanadium
phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have
ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground
state is reduced, and the diffuse magnetic scattering is enhanced, as the
predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
Lyman alpha absorption lines from mini pancakes
[Abridged abstract:] Recent numerical simulations show that many \lyal
absorption lines of column densities \nha \la 10^{15} cm are produced
in transient, mini pancakes. Such pancakes are modeled here, approximating the
initial perturbation leading to the formation of the pancake as a single
sinusoidal wave. The density and temperature profiles of the gas in the pancake
are determined for , where is the collapse redshift. The
\lyal absorption line profiles for a line of sight through the pancake are
then calculated. The absorption lines in general have wings signifying bulk
motions in the gas. It is shown that the deviation from a single Voigt profile
is large for small H I column density lines, in which the effect of bulk
motions is large. For lines with \nha > 10^{13} cm, high temperature
tend to wash out the signatures of bulk motion. The analytical modeling of mini
pancakes associated with \lyal forest lines --- with 10^{13} \la \nha \la
10^{15} cm---gives the corresponding mass scales. It is shown here
that, for typical values of cosmological parameters, absorption lines with
\nha \sim 10^{14} cm correspond to structures with baryonic mass of
M with an overdensity of at .
The value of \nha can change by a factor in the course of evolution
of the pancake in time. It is also shown that there is an upper limit to \nha
from a pancake due to the slow recombination rate and the importance of
collisional ionization at high temperatures. Mini pancakes do not give rise to
\lyal lines with \nha \ga 10^{14.5} cm, for \j21=1 and
.Comment: Latex with aaspp4.sty (25 pages), 6 figures, Accepted for publication
in The Astrophysical Journa
- …
