3,175 research outputs found
A Metalanguage for Guarded Iteration
Notions of guardedness serve to delineate admissible recursive definitions in
various settings in a compositional manner. In recent work, we have introduced
an axiomatic notion of guardedness in symmetric monoidal categories, which
serves as a unifying framework for various examples from program semantics,
process algebra, and beyond. In the present paper, we propose a generic
metalanguage for guarded iteration based on combining this notion with the
fine-grain call-by-value paradigm, which we intend as a unifying programming
language for guarded and unguarded iteration in the presence of computational
effects. We give a generic (categorical) semantics of this language over a
suitable class of strong monads supporting guarded iteration, and show it to be
in touch with the standard operational behaviour of iteration by giving a
concrete big-step operational semantics for a certain specific instance of the
metalanguage and establishing soundness and (computational) adequacy for this
case.Comment: extended version for the special issu
Evaluation of the Northern Territory Library's Libraries and Knowledge Centres Model
Evaluation of the Northern Territory Library's model for Libraries and Knowledge Centres in Indigenous communities
Early-type Galaxies at z ~ 1.3. II. Masses and Ages of Early-type Galaxies in Different Environments and Their Dependence on Stellar Population Model Assumptions
We have derived masses and ages for 79 early-type galaxies (ETGs) in different environments at z ~ 1.3 in the Lynx supercluster and in the GOODS/CDF-S field using multi-wavelength (0.6-4.5 μm; KPNO, Palomar, Keck, Hubble Space Telescope, Spitzer) data sets. At this redshift the contribution of the thermally pulsing asymptotic giant branch (TP-AGB) phase is important for ETGs, and the mass and age estimates depend on the choice of the stellar population model used in the spectral energy distribution fits. We describe in detail the differences among model predictions for a large range of galaxy ages, showing the dependence of these differences on age. Current models still yield large uncertainties. While recent models from Maraston and Charlot & Bruzual offer better modeling of the TP-AGB phase with respect to less recent Bruzual & Charlot models, their predictions do not often match. The modeling of this TP-AGB phase has a significant impact on the derived parameters for galaxies observed at high redshift. Some of our results do not depend on the choice of the model: for all models, the most massive galaxies are the oldest ones, independent of the environment. When using the Maraston and Charlot & Bruzual models, the mass distribution is similar in the clusters and in the groups, whereas in our field sample there is a deficit of massive (M ≳ 10^(11) M_☉) ETGs. According to those last models, ETGs belonging to the cluster environment host on average older stars with respect to group and field populations. This difference is less significant than the age difference in galaxies of different masses
On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables
In this paper we explore further the connections between convex bodies
related to quantum correlation experiments with dichotomic variables and
related bodies studied in combinatorial optimization, especially cut polyhedra.
Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J.
Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show
that several well known bodies related to cut polyhedra are equivalent to
bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to
represent hidden deterministic behaviors, quantum behaviors, and no-signalling
behaviors. Among other things, our results allow a unique representation of
these bodies, give a necessary condition for vertices of the no-signalling
polytope, and give a method for bounding the quantum violation of Bell
inequalities by means of a body that contains the set of quantum behaviors.
Optimization over this latter body may be performed efficiently by semidefinite
programming. In the second part of the paper we apply these results to the
study of classical correlation functions. We provide a complete list of tight
inequalities for the two party case with (m,n) dichotomic observables when
m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation
inequalities.Comment: 17 pages, 2 figure
Establishing a nu_{mu,tau} Component in the Solar Neutrino Flux
We point out that the recoil electron kinetic energy spectra in the nu-e
elastic scattering are different for incident nu_{e} or nu_{mu,tau}, and hence
one can in principle establish the existence of the nu_{mu,tau} component in
the solar neutrino flux by fitting the shape of the spectrum. This would be a
new model-independent test of the solar neutrino oscillation in a single
experiment, free from astrophysical and nuclear physics uncertainties. For the
^7Be neutrinos, it is possible to determine the nu_{mu,tau} component at
BOREXINO or KamLAND, if the background is sufficiently low. Note that this
effect is different from the distortion in the incident neutrino energy
spectrum, which has been discussed in the literature.Comment: 12 pages, 3 figures, uses psfig. Figures reorganized, one corrected,
conclusions unchange
A review on data stream classification
At this present time, the significance of data streams cannot be denied as many researchers have placed their focus on the research areas of databases, statistics, and computer science. In fact, data streams refer to some data points sequences that are found in order with the potential to be non-binding, which is generated from the process of generating information in a manner that is not stationary. As such the typical tasks of searching data have been linked to streams of data that are inclusive of clustering, classification, and repeated mining of pattern. This paper presents several data stream clustering approaches, which are based on density, besides attempting to comprehend the function of the related algorithms; both semi-supervised and active learning, along with reviews of a number of recent studies
Scaling and Crossover to Tricriticality in Polymer Solutions
We propose a scaling description of phase separation of polymer solutions.
The scaling incorporates three universal limiting regimes: the Ising limit
asymptotically close to the critical point of phase separation, the "ideal-gas"
limit for the pure-solvent phase, and the tricritical limit for the
polymer-rich phase asymptotically close to the theta point. We have also
developed a phenomenological crossover theory based on the
near-tricritical-point Landau expansion renormalized by fluctuations. This
theory validates the proposed scaled representation of experimental data and
crossover to tricriticality.Comment: 4 pages, 3 figure
Stress-driven instability in growing multilayer films
We investigate the stress-driven morphological instability of epitaxially
growing multilayer films, which are coherent and dislocation-free. We construct
a direct elastic analysis, from which we determine the elastic state of the
system recursively in terms of that of the old states of the buried layers. In
turn, we use the result for the elastic state to derive the morphological
evolution equation of surface profile to first order of perturbations, with the
solution explicitly expressed by the growth conditions and material parameters
of all the deposited layers. We apply these results to two kinds of multilayer
structures. One is the alternating tensile/compressive multilayer structure,
for which we determine the effective stability properties, including the effect
of varying surface mobility in different layers, its interplay with the global
misfit of the multilayer film, and the influence of asymmetric structure of
compressive and tensile layers on the system stability. The nature of the
asymmetry properties found in stability diagrams is in agreement with
experimental observations. The other multilayer structure that we study is one
composed of stacked strained/spacer layers. We also calculate the kinetic
critical thickness for the onset of morphological instability and obtain its
reduction and saturation as number of deposited layers increases, which is
consistent with recent experimental results. Compared to the single-layer film
growth, the behavior of kinetic critical thickness shows deviations for upper
strained layers.Comment: 27 pages, 11 figures; Phys. Rev. B, in pres
Evidence for the double degeneracy of the ground-state in the 3D spin glass
A bivariate version of the multicanonical Monte Carlo method and its
application to the simulation of the three-dimensional Ising spin glass
are described. We found the autocorrelation time associated with this
particular multicanonical method was approximately proportional to the system
volume, which is a great improvement over previous methods applied to
spin-glass simulations. The principal advantage of this version of the
multicanonical method, however, was its ability to access information
predictive of low-temperature behavior. At low temperatures we found results on
the three-dimensional Ising spin glass consistent with a double
degeneracy of the ground-state: the order-parameter distribution function
converged to two delta-function peaks and the Binder parameter
approached unity as the system size was increased. With the same density of
states used to compute these properties at low temperature, we found their
behavior changing as the temperature is increased towards the spin glass
transition temperature. Just below this temperature, the behavior is consistent
with the standard mean-field picture that has an infinitely degenerate ground
state. Using the concept of zero-energy droplets, we also discuss the structure
of the ground-state degeneracy. The size distribution of the zero-energy
droplets was found to produce the two delta-function peaks of .Comment: 33 pages with 31 eps figures include
- …
