5,332 research outputs found
Magnetic properties of the spin Heisenberg chain with hexamer modulation of exchange
We consider the spin-1/2 Heisenberg chain with alternating spin exchange %on
even and odd sites in the presence of additional modulation of exchange on odd
bonds with period three. We study the ground state magnetic phase diagram of
this hexamer spin chain in the limit of very strong antiferromagnetic (AF)
exchange on odd bonds using the numerical Lanczos method and bosonization
approach. In the limit of strong magnetic field commensurate with the
dominating AF exchange, the model is mapped onto an effective Heisenberg
chain in the presence of uniform and spatially modulated fields, which is
studied using the standard continuum-limit bosonization approach. In absence of
additional hexamer modulation, the model undergoes a quantum phase transition
from a gapped string order into the only one gapless L\"uttinger liquid (LL)
phase by increasing the magnetic field. In the presence of hexamer modulation,
two new gapped phases are identified in the ground state at magnetization equal
to 1/3 and 2/3 of the saturation value. These phases reveal themselves also in
magnetization curve as plateaus at corresponding values of magnetization. As
the result, the magnetic phase diagram of the hexamer chain shows seven
different quantum phases, four gapped and three gapless and the system is
characterized by six critical fields which mark quantum phase transitions
between the ordered gapped and the LL gapless phases.Comment: 21 pages, 5 figures, Journal of Physics: Condensed Matter, 24,
116002, (2012
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
An overview of anti-diabetic plants used in Gabon: Pharmacology and Toxicology
© 2017 Elsevier B.V. All rights reserved.Ethnopharmacological relevance: The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. Materials and methods: Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including ‘Diabetes’ ‘Gabon’ ‘Toxicity’ ‘Constituents’ ‘hyperglycaemia’ were used. Results: A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. Conclusion: An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.Peer reviewedFinal Accepted Versio
- …
