486 research outputs found

    Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states

    Full text link
    A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear ωˉψ\bar{\omega}-\psi relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determine maximum entropy or minimum enstrophy states. We use these relaxation equations to study geometry induced phase transitions in rectangular domains. In particular, we illustrate with the relaxation equations the transition between monopoles and dipoles predicted by Chavanis and Sommeria [J. Fluid. Mech. 314, 267 (1996)]. We take into account stable as well as metastable states and show that metastable states are robust and have negative specific heats. This is the first evidence of negative specific heats in that context. We also argue that saddle points of entropy can be long-lived and play a role in the dynamics because the system may not spontaneously generate the perturbations that destabilize them.Comment: 26 pages, 10 figure

    Statistical mechanics of Beltrami flows in axisymmetric geometry: Equilibria and bifurcations

    Full text link
    We characterize the thermodynamical equilibrium states of axisymmetric Euler-Beltrami flows. They have the form of coherent structures presenting one or several cells. We find the relevant control parameters and derive the corresponding equations of state. We prove the coexistence of several equilibrium states for a given value of the control parameter like in 2D turbulence [Chavanis and Sommeria, J. Fluid Mech. 314, 267 (1996)]. We explore the stability of these equilibrium states and show that all states are saddle points of entropy and can, in principle, be destabilized by a perturbation with a larger wavenumber, resulting in a structure at the smallest available scale. This mechanism is therefore reminiscent of the 3D Richardson energy cascade towards smaller and smaller scales. Therefore, our system is truly intermediate between 2D turbulence (coherent structures) and 3D turbulence (energy cascade). We further explore numerically the robustness of the equilibrium states with respect to random perturbations using a relaxation algorithm in both canonical and microcanonical ensembles. We show that saddle points of entropy can be very robust and therefore play a role in the dynamics. We evidence differences in the robustness of the solutions in the canonical and microcanonical ensembles. A scenario of bifurcation between two different equilibria (with one or two cells) is proposed and discussed in connection with a recent observation of a turbulent bifurcation in a von Karman experiment [Ravelet et al., Phys. Rev. Lett. 93, 164501 (2004)].Comment: 25 pages; 16 figure

    Genetic Algorithms in Supply Chain Scheduling of Ready-Mixed Concrete

    Get PDF
    The coordination of just-in-time production and transportation in a network of partially independent facilities to guarantee timely delivery to distributed customers is one of the most challenging aspects of supply chain management. From the theoretical perspective, the timely production/distribution can be viewed as a hybrid combination of planning, scheduling and routing problem, each notoriously affected by nearly prohibitive combinatorial complexity. From a practical viewpoint, the problem calls for a trade-off between risks and profits. This paper focuses on the ready-made concrete delivery: in addition to the mentioned complexity, strict time-constraints forbid both earliness and lateness of the supply. After developing a detailed model of the considered problem, we propose a novel meta-heuristic approach based on a hybrid genetic algorithm combined with constructive heuristics. A detailed case study derived from industrial data is used to illustrate the potential of the proposed approach

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

    Full text link
    Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [Ellis, Haven, Turkington, Nonlin., 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D, 237, 1998 (2008)]. They can provide a small-scale parametrization of 2D turbulence or serve as numerical algorithms to compute maximum entropy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.Comment: 21 pages, 9 figure

    Mechanisms of hypoxic up-regulation of versican gene expression in macrophages

    Get PDF
    Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM), and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold) by long term hypoxia (5 days) than by 1 day of hypoxia (48 fold). We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K), LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression
    corecore