532 research outputs found
Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients
Multiple linear regression (MLR) remains a mainstay analysis in organizational research, yet intercorrelations
between predictors (multicollinearity) undermine the interpretation of MLR weights in
terms of predictor contributions to the criterion. Alternative indices include validity coefficients,
structure coefficients, product measures, relative weights, all-possible-subsets regression, dominance
weights, and commonality coefficients. This article reviews these indices, and uniquely, it
offers freely available software that (a) computes and compares all of these indices with one another,
(b) computes associated bootstrapped confidence intervals, and (c) does so for any number of predictors
so long as the correlation matrix is positive definite. Other available software is limited in all
of these respects. We invite researchers to use this software to increase their insights when applying
MLR to a data set. Avenues for future research and application are discussed
Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V_2O_3
Magnetic correlations in all four phases of pure and doped vanadium
sesquioxide V_2O_3 have been examined by magnetic thermal neutron scattering.
While the antiferromagnetic insulator can be accounted for by a Heisenberg
localized spin model, the long range order in the antiferromagnetic metal is an
incommensurate spin-density-wave, resulting from a Fermi surface nesting
instability. Spin dynamics in the strongly correlated metal are dominated by
spin fluctuations in the Stoner electron-hole continuum. Furthermore, our
results in metallic V_2O_3 represent an unprecedentedly complete
characterization of the spin fluctuations near a metallic quantum critical
point, and provide quantitative support for the SCR theory for itinerant
antiferromagnets in the small moment limit. Dynamic magnetic correlations for
energy smaller than k_BT in the paramagnetic insulator carry substantial
magnetic spectral weight. However, the correlation length extends only to the
nearest neighbor distance. The phase transition to the antiferromagnetic
insulator introduces a sudden switching of magnetic correlations to a different
spatial periodicity which indicates a sudden change in the underlying spin
Hamiltonian. To describe this phase transition and also the unusual short range
order in the paramagnetic state, it seems necessary to take into account the
orbital degrees of freedom associated with the degenerate d-orbitals at the
Fermi level in V_2O_3.Comment: Postscript file, 24 pages, 26 figures, 2 tables, accepted by Phys.
Rev.
The Puromycin Route to Assess Stereo- and Regiochemical Constraints on Peptide Bond Formation in Eukaryotic Ribosomes
We synthesized a series of puromycin analogues to probe the chemical specificity of the ribosome in an intact eukaryotic translation system. These studies reveal that both d-enantiomers and β-amino acid analogues can be incorporated into protein, and provide a quantitative means to rank natural and unnatural residues. Modeling of a d-amino acid analogue into the 50S ribosomal subunit indicates that steric clash may provide part of the chiral discrimination. The data presented provide one metric of the chiral and regiospecificity of mammalian ribosomes
The state, civil society and social rights in contemporary Russia
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=fjcs21peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=fjcs2
EFFECTS OF PUROMYCIN, ACETOXYCYCLOHEXIMIDE AND ACTINOMYCIN D ON PROTEIN SYNTHESIS IN GOLDFISH BRAIN *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65427/1/j.1471-4159.1966.tb10284.x.pd
The patriotism of gentlemen with red hair: European Jews and the liberal state, 1789–1939
European Jewish history from 1789–1939 supports the view that construction of national identities even in secular liberal states was determined not only by modern considerations alone but also by ancient patterns of thought, behaviour and prejudice. Emancipation stimulated unprecedented patriotism, especially in wartime, as Jews strove to prove loyalty to their countries of citizenship. During World War I, even Zionists split along national lines, as did families and friends. Jewish patriotism was interchangeable with nationalism inasmuch as Jews identified themselves with national cultures. Although emancipation implied acceptance and an end to anti-Jewish prejudice in the modern liberal state, the kaleidoscopic variety of Jewish patriotism throughout Europe inadvertently undermined the idea of national identity and often provoked anti-Semitism. Even as loyal citizens of separate states, the Jews, however scattered, disunited and diverse, were made to feel, often unwillingly, that they were one people in exile
Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli
<p>Abstract</p> <p>Background</p> <p>RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. <it>Escherichia coli</it>/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of <it>E. coli </it>is the most comprehensive model at this time.</p> <p>Results</p> <p>Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway.</p> <p>Conclusions</p> <p>Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.</p
Evolution of Thermal Response Properties in a Cold-Activated TRP Channel
Animals sense changes in ambient temperature irrespective of whether core body temperature is internally maintained (homeotherms) or subject to environmental variation (poikilotherms). Here we show that a cold-sensitive ion channel, TRPM8, displays dramatically different thermal activation ranges in frogs versus mammals or birds, consistent with variations in these species' cutaneous and core body temperatures. Thus, somatosensory receptors are not static through evolution, but show functional diversity reflecting the characteristics of an organism's ecological niche
Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy
The human APOBEC3G is an innate restriction factor that, in the absence of Vif, restricts HIV-1 replication by inducing excessive deamination of cytidine residues in nascent reverse transcripts and inhibiting reverse transcription and integration. To shed light on impact of A3G-Vif interactions on HIV replication, we developed a multi-scale computational system consisting of intracellular (single-cell), cellular and extracellular (multicellular) events by using ordinary differential equations. The single-cell model describes molecular-level events within individual cells (such as production and degradation of host and viral proteins, and assembly and release of new virions), whereas the multicellular model describes the viral dynamics and multiple cycles of infection within a population of cells. We estimated the model parameters either directly from previously published experimental data or by running simulations to find the optimum values. We validated our integrated model by reproducing the results of in vitro T cell culture experiments. Crucially, both downstream effects of A3G (hypermutation and reduction of viral burst size) were necessary to replicate the experimental results in silico. We also used the model to study anti-HIV capability of several possible therapeutic strategies including: an antibody to Vif; upregulation of A3G; and mutated forms of A3G. According to our simulations, A3G with a mutated Vif binding site is predicted to be significantly more effective than other molecules at the same dose. Ultimately, we performed sensitivity analysis to identify important model parameters. The results showed that the timing of particle formation and virus release had the highest impacts on HIV replication. The model also predicted that the degradation of A3G by Vif is not a crucial step in HIV pathogenesis
Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata)
BACKGROUND: The visual system is important for animals for mate choice, food acquisition, and predator avoidance. Animals possessing a visual system can sense particular wavelengths of light emanating from objects and their surroundings and perceive their environments by processing information contained in these visual perceptions of light. Visual perception in individuals varies with the absorption spectra of visual pigments and the expression levels of opsin genes, which may be altered according to the light environments. However, which light environments and the mechanism by which they change opsin expression profiles and whether these changes in opsin gene expression can affect light sensitivities are largely unknown. This study determined whether the light environment during growth induced plastic changes in opsin gene expression and behavioral sensitivity to particular wavelengths of light in guppies (Poecilia reticulata). RESULTS: Individuals grown under orange light exhibited a higher expression of long wavelength-sensitive (LWS) opsin genes and a higher sensitivity to 600-nm light than those grown under green light. In addition, we confirmed that variations in the expression levels of LWS opsin genes were related to the behavioral sensitivities to long wavelengths of light. CONCLUSIONS: The light environment during the growth stage alters the expression levels of LWS opsin genes and behavioral sensitivities to long wavelengths of light in guppies. The plastically enhanced sensitivity to background light due to changes in opsin gene expression can enhance the detection and visibility of predators and foods, thereby affecting survival. Moreover, changes in sensitivities to orange light may lead to changes in the discrimination of orange/red colors of male guppies and might alter female preferences for male color patterns. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0679-z) contains supplementary material, which is available to authorized users
- …
