4,834 research outputs found
Discovery of a Magnetic DZ White Dwarf with Zeeman-Split Lines of Heavy Elements
A spectroscopic survey of previously-unstudied Luyten Half Second proper
motion stars has resulted in the discoveries of two new cool magnetic white
dwarfs. One (LHS 2273) is a routine DA star, T= 6,500K, with Zeeman-split H
alpha and H beta, for which a simple model suggests a polar field strength of
18.5 MG viewed close to equator-on. However, the white dwarf LHS 2534 proves to
be the first magnetic DZ showing Zeeman-split Na I and Mg I components, as well
as Ca I and Ca II lines for which Zeeman components are blended. The Na I
splittings result in a mean surface field strength estimate of 1.92 MG. Apart
from the magnetic field, LHS 2534 is one of the most heavily-blanketed and
coolest DZ white dwarfs at T ~ 6,000K.Comment: 7 pages, Astrophysical Journal (Letters), in pres
From Spitzer Galaxy Photometry to Tully-Fisher Distances
This paper involves a data release of the observational campaign: Cosmicflows
with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the
survey is presented. An additional ~ 400 galaxies from various other Spitzer
surveys are also analyzed. CFS complements the Spitzer Survey of Stellar
Structure in Galaxies, that provides photometry for an additional 2352
galaxies, by extending observations to low galactic latitudes (|b|<30 degrees).
Among these galaxies are calibrators, selected in K band, of the Tully-Fisher
relation. The addition of new calibrators demonstrate the robustness of the
previously released calibration. Our estimate of the Hubble constant using
supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc.
Distance-derived radial peculiar velocities, for the 1935 galaxies with all the
available parameters, will be incorporated into a new data release of the
Cosmicflows project. The size of the previous catalog will be increased by 20%,
including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table
Quantum limit of photothermal cooling
We study the problem of cooling a mechanical oscillator using the
photothermal (bolometric) force. Contrary to previous attempts to model this
system, we take into account the noise effects due to the granular nature of
photon absorption. This allows us to tackle the cooling problem down to the
noise dominated regime and to find reasonable estimates for the lowest
achievable phonon occupation in the cantilever
Machine learning approaches for early DRG classification and resource allocation
Recent research has highlighted the need for upstream planning in healthcare service delivery systems, patient scheduling, and resource allocation in the hospital inpatient setting. This study examines the value of upstream planning within hospital-wide resource allocation decisions based on machine learning (ML) and mixed-integer programming (MIP), focusing on prediction of diagnosis-related groups (DRGs) and the use of these predictions for allocating scarce hospital resources. DRGs are a payment scheme employed at patients’ discharge, where the DRG and length of stay determine the revenue that the hospital obtains. We show that early and accurate DRG classification using ML methods, incorporated into an MIP-based resource allocation model, can increase the hospital’s contribution margin, the number of admitted patients, and the utilization of resources such as operating rooms and beds. We test these methods on hospital data containing more than 16,000 inpatient records and demonstrate improved DRG classification accuracy as compared to the hospital’s current approach. The largest improvements were observed at and before admission, when information such as procedures and diagnoses is typically incomplete, but performance was improved even after a substantial portion of the patient’s length of stay, and under multiple scenarios making different assumptions about the available information. Using the improved DRG predictions within our resource allocation model improves contribution margin by 2.9% and the utilization of scarce resources such as operating rooms and beds from 66.3% to 67.3% and from 70.7% to 71.7%, respectively. This enables 9.0% more nonurgent elective patients to be admitted as compared to the baseline
Confidence and Backaction in the Quantum Filter Equation
We study the confidence and backaction of state reconstruction based on a
continuous weak measurement and the quantum filter equation. As a physical
example we use the traditional model of a double quantum dot being continuously
monitored by a quantum point contact. We examine the confidence of the estimate
of a state constructed from the measurement record, and the effect of
backaction of that measurement on that state. Finally, in the case of general
measurements we show that using the relative entropy as a measure of confidence
allows us to define the lower bound on the confidence as a type of quantum
discord.Comment: 9 pages, 6 figure
- …
