205 research outputs found
Radio supernovae, supernova remnants and HII regions in NGC 2146 observed with MERLIN and the VLA
We present a high-resolution 5-GHz radio continuum map of the starburst
galaxy NGC 2146 made with MERLIN and the VLA, in a search of radio supernovae
and supernova remnants expected to be already produced by the most massive
stars in the starburst. At 5 GHz, about 20 point sources were detected earlier
by Glendenning & Kronberg (1986) in the central 800 pc of NGC 2146. Our
observations with higher sensitivity and resolution made with MERLIN and the
VLA confirms the detection of 18 sources, and resolves 7 of them. Additional
1.6-GHz MERLIN observations disclose 9 sources coincident in position with
those detected at 5 GHz, which allows us to derive their spectral indices. Only
3 sources have indices consistent with synchrotron emission from supernova
remnants or radio supernovae, while the others have very steep inverted
spectra. We suggest that the sources with positive spectral index are optically
thick ultra-compact and/or ultra-dense HII regions with high electron densities
and high emission measures (EM > 10^(7) cm^(-6) pc). Minimum energy
requirements indicate that these regions may contain up to 1000 equivalent
stars of type O6. When compared with M 82, the galaxy NGC 2146 lacks however a
large number of supernova remnants. We suggest that NGC 2146 is experiencing a
burst of star formation stronger than that in M 82, but being in a younger
phase. We may, however, not exclude an alternative scenario in which strong
free-free absorption at 1.6 GHz in foreground ionized gas with very high
emission measures (EM > 10^(8) cm^(-6) pc) hides a certain number of supernova
remnants, thus rendering for some sources the observed inverted spectra.Comment: 10 pages, including 2 figures. Accepted for publication in Astronomy
and Astrophysic
The influence of the cluster environment on the large-scale radio continuum emission of 8 Virgo cluster spirals
The influence of the environment on the polarized and total power radio
continuum emission of cluster spiral galaxies is investigated. We present deep
scaled array VLA 20 and 6 cm observations including polarization of 8 Virgo
spiral galaxies. These data are combined with existing optical, HI, and Halpha
data. Ram pressure compression leads to sharp edges of the total power
distribution at one side of the galactic disk. These edges coincide with HI
edges. In edge-on galaxies the extraplanar radio emission can extend further
than the HI emission. In the same galaxies asymmetric gradients in the degree
of polarization give additional information on the ram pressure wind direction.
The local total power emission is not sensitive to the effects of ram pressure.
The radio continuum spectrum might flatten in the compressed region only for
very strong ram pressure. This implies that neither the local star formation
rate nor the turbulent small-scale magnetic field are significantly affected by
ram pressure. Ram pressure compression occurs mainly on large scales (>=1 kpc)
and is primarily detectable in polarized radio continuum emission.Comment: 16 pages, 10 figures, accepted for publication in A&
The Nature of Starburst Activity in M82
We present new evolutionary synthesis models of M82 based mainly on
observations consisting of near-infrared integral field spectroscopy and
mid-infrared spectroscopy. The models incorporate stellar evolution, spectral
synthesis, and photoionization modeling, and are optimized for 1-45 micron
observations of starburst galaxies. The data allow us to model the starburst
regions on scales as small as 25 pc. We investigate the initial mass function
(IMF) of the stars and constrain quantitatively the spatial and temporal
evolution of starburst activity in M82. We find a typical decay timescale for
individual burst sites of a few million years. The data are consistent with the
formation of very massive stars (> 50-100 Msun) and require a flattening of the
starburst IMF below a few solar masses assuming a Salpeter slope at higher
masses. Our results are well matched by a scenario in which the global
starburst activity in M82 occurred in two successive episodes each lasting a
few million years, peaking about 10 and 5 Myr ago. The first episode took place
throughout the central regions of M82 and was particularly intense at the
nucleus while the second episode occurred predominantly in a circumnuclear ring
and along the stellar bar. We interpret this sequence as resulting from the
gravitational interaction M82 and its neighbour M81, and subsequent bar-driven
evolution. The short burst duration on all spatial scales indicates strong
negative feedback effects of starburst activity, both locally and globally.
Simple energetics considerations suggest the collective mechanical energy
released by massive stars was able to rapidly inhibit star formation after the
onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in
the Astrophysical Journa
Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010
The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 &mu;m. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM<sub>10</sub> mass concentrations at the Jungfraujoch reached 30 &mu;gm<sup>&minus;3</sup> and 70 &mu;gm<sup>&minus;3</sup> (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 &mu;gm<sup>&minus;3</sup> of volcanic ash related PM<sub>10</sub> (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) &mu;gm<sup>&minus;3</sup> on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition
Formation of a Massive Black Hole at the Center of the Superbubble in M82
We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations
of the central region (about 450 pc in radius) of M82 with the Nobeyama
Millimeter Array, and have successfully imaged a molecular superbubble and
spurs. The center of the superbubble is clearly shifted from the nucleus by 140
pc. This position is close to that of the massive black hole (BH) of >460 Mo
and the 2.2 micron secondary peak (a luminous supergiant dominated cluster),
which strongly suggests that these objects may be related to the formation of
the superbubble. Consideration of star formation in the cluster based on the
infrared data indicates that (1) energy release from supernovae can account for
the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs
available for building-up the massive BH may be much higher than 460 Mo, and
(3) it is possible to form the middle-mass BH of 100-1000 Mo within the
timescale of the superbubble. We suggest that the massive BH was produced and
is growing in the intense starburst region.Comment: 9 pages, 3 figures, to appear in ApJ Lette
Mapping the submillimeter spiral wave in NGC 6946
We have analysed SCUBA 850\mum images of the (near) face-on spiral galaxy NGC
6946, and found a tight correlation between dust thermal emission and molecular
gas. The map of visual optical depth relates well to the distribution of
neutral gas (HI+H2) and implies a global gas-to-dust ratio of 90. There is no
significant radial variation of this ratio: this can be understood, since the
gas content is dominated by far by the molecular gas. The latter is estimated
through the CO emission tracer, which is itself dependent on metallicity,
similarly to dust emission. By comparing the radial profile of our visual
optical depth map with that of the SCUBA image, we infer an emissivity (dust
absorption coefficient) at 850\mum that is 3 times lower than the value
measured by COBE in the Milky Way, and 9 times lower than in NGC 891. A
decomposition of the spiral structure half way out along the disk of NGC 6946
suggests an interarm optical depth of between 1 and 2. These surprisingly high
values represent 40-80% of the visual opacity that we measure for the arm
region (abridged).Comment: 12 pages, 9 figures, accepted in A&
Quantification of topographic venting of boundary layer air to the free troposphere
International audienceNet vertical air mass export by thermally driven flows from the atmospheric boundary layer (ABL) to the free troposphere (FT) above deep Alpine valleys was investigated. The vertical export of pollutants above mountainous terrain is presently poorly represented in global chemistry transport models (GCTMs) and needs to be quantified. Air mass budgets were calculated using aircraft observations obtained in deep Alpine valleys. The results show that on average 3 times the valley air mass is exported vertically per day under fair weather conditions. During daytime the type of valleys investigated in this study can act as an efficient "air pump" that transports pollutants upward. The slope wind system within the valley plays an important role in redistributing pollutants. Nitrogen oxide emissions in mountainous regions are efficiently injected into the FT. This could enhance their ozone (O3) production efficiency and thus influences tropospheric pollution budgets. Once lifted to the FT above the Alps pollutants are transported horizontally by the synoptic flow and are subject to European pollution export. Forward trajectory studies show that under fair weather conditions two major pathways for air masses above the Alps dominate. Air masses moving north are mixed throughout the whole tropospheric column and further transported eastward towards Asia. Air masses moving south descend within the subtropical high pressure system above the Mediterranean
Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment
This paper describes a numerical interpretation of the April 2007, CarboEurope Regional Experiment Strategy (CERES) campaign, devoted to the study of the CO2 cycle at the regional scale. Four consecutive clear sky days with intensive observations of CO2 concentration, fluxes at the surface and in the boundary layer have been simulated with the Meso-NH mesoscale model, coupled to ISBA-A-gs land surface model. The main result of this paper is to show how aircraft observations of CO2 concentration have been used to identify surface model errors and to calibrate the CO2 driving component of the surface model. In fact, the comparisons between modelled and observed CO2 concentrations within the Atmospheric Boundary Layer (ABL) allow to calibrate and correct not only the parameterization of respired CO2 fluxes by the ecosystem but also the Leaf Area Index (LAI) of the dominating land cover. After this calibration, the paper describes systematic comparisons of the model outputs with numerous data collected during the CERES campaign, in April 2007. For instance, the originality of this paper is the spatial integration of the comparisons. In fact, the aircraft observations of CO2 concentration and fluxes and energy fluxes are used for the model validation from the local to the regional scale. As a conclusion, the CO2 budgeting approach from the mesoscale model shows that the winter croplands are assimilating more CO2 than the pine forest, at this stage of the year and this case study
The Herschel Exploitation of Local Galaxy Andromeda (HELGA). VI. The distribution and properties of molecular cloud associations in M31
In this paper we present a catalog of Giant Molecular Clouds (GMCs) in the An- dromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy An- dromeda (HELGA) dataset. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterise the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al (2012). 326 GMCs in the mass range 104 − 107 M⊙ are identified, their cumulative mass distribution is found to be proportional to M −2.34 in agreement with earlier studies. The GMCs appear to follow the same cloud mass to LCO correlation observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit suggesting that we are observing associations of GMCs. Following Gordon et al. (2006), we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8fdg9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system
- …
