1,114 research outputs found

    Microscopic mechanism for the 1/8 magnetization plateau in SrCu_2(BO_3)_2

    Full text link
    The frustrated quantum magnet SrCu_2(BO_3)_2 shows a remarkably rich phase diagram in an external magnetic field including a sequence of magnetization plateaux. The by far experimentally most studied and most prominent magnetization plateau is the 1/8 plateau. Theoretically, one expects that this material is well described by the Shastry-Sutherland model. But recent microscopic calculations indicate that the 1/8 plateau is energetically not favored. Here we report on a very simple microscopic mechanism which naturally leads to a 1/8 plateau for realistic values of the magnetic exchange constants. We show that the 1/8 plateau with a diamond unit cell benefits most compared to other plateau structures from quantum fluctuations which to a large part are induced by Dzyaloshinskii-Moriya interactions. Physically, such couplings result in kinetic terms in an effective hardcore boson description leading to a renormalization of the energy of the different plateaux structures which we treat in this work on the mean-field level. The stability of the resulting plateaux are discussed. Furthermore, our results indicate a series of stripe structures above 1/8 and a stable magnetization plateau at 1/6. Most qualitative aspects of our microscopic theory agree well with a recently formulated phenomenological theory for the experimental data of SrCu_2(BO_3)_2. Interestingly, our calculations point to a rather large ratio of the magnetic couplings in the Shastry-Sutherland model such that non-perturbative effects become essential for the understanding of the frustrated quantum magnet SrCu_2(BO_3)_2.Comment: 24 pages, 24 figure

    Spectroscopy of the globular clusters in M87

    Get PDF
    With a velocity dispersion of 370 + or - 50 km/sec the globular cluster system of M87 is kinematically hotter than the stars in the giant elliptical itself. This is consistent with the clusters' shallower density distribution for isotropic orbits. The mean metallicity of the 27 clusters in the sample analyzed here is no more than a factor of 2 more metal rich than the cluster system of the Milky Way, but considerably more metal poowr than the integrated starlight in the field at a radius of 1' from the center of M87. There is no evidence for the existence of young clusters in the system. The mass-radius relation between 1' and 5' required to contain the globular clusters joins on to that required to contain the hot gas around M87

    Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    Full text link
    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. In this article we review the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and discuss contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.Comment: 47 pages, 41 figure

    Constraints on the Formation of the Globular Cluster IC 4499 from Multi-Wavelength Photometry

    Full text link
    We present new multiband photometry for the Galactic globular cluster IC 4499 extending well past the main sequence turn-off in the U, B, V, R, I, and DDO51 bands. This photometry is used to determine that IC4499 has an age of 12 pm 1 Gyr and a cluster reddening of E(B-V) = 0.22 pm 0.02. Hence, IC 4499 is coeval with the majority of Galactic GCs, in contrast to suggestions of a younger age. The density profile of the cluster is observed to not flatten out to at least r~800 arcsec, implying that either the tidal radius of this cluster is larger than previously estimated, or that IC 4499 is surrounded by a halo. Unlike the situation in some other, more massive, globular clusters, no anomalous color spreads in the UV are detected among the red giant branch stars. The small uncertainties in our photometry should allow the detection of such signatures apparently associated with variations of light elements within the cluster, suggesting that IC 4499 consists of a single stellar population.Comment: accepted to MNRA

    Spin Hall effect transistor

    Full text link
    Spin transistors and spin Hall effects have been two separate leading directions of research in semiconductor spintronics which seeks new paradigms for information processing technologies. We have brought the two directions together to realize an all-semiconductor spin Hall effect transistor. Our scheme circumvents semiconductor-ferromagnet interface problems of the original Datta-Das spin transistor concept and demonstrates the utility of the spin Hall effects in microelectronics. The devices use diffusive transport and operate without electrical current, i.e., without Joule heating in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our experimental study is complemented by numerical Monte Carlo simulations of spin-diffusion through the transistor channel.Comment: 11 pages, 3 figure

    Observation of multiple sausage oscillations in cool postflare loop

    Full text link
    Using simultaneous high spatial (1.3 arc sec) and temporal (5 and 10 s) resolution H-alpha observations from the 15 cm Solar Tower Telescope at ARIES, we study the oscillations in the relative intensity to explore the possibility of sausage oscillations in the chromospheric cool postflare loop. We use standard wavelet tool, and find the oscillation period of ~ 587 s near the loop apex, and ~ 349 s near the footpoint. We suggest that the oscillations represent the fundamental and the first harmonics of fast sausage waves in the cool postflare loop. Based on the period ratio P1/P2 ~ 1.68, we estimate the density scale height in the loop as ~ 17 Mm. This value is much higher than the equilibrium scale height corresponding to H-alpha temperature, which probably indicates that the cool postflare loop is not in hydrostatic equilibrium. Seismologically estimated Alfv\'en speed outside the loop is ~ 300-330 km/s. The observation of multiple oscillations may play a crucial role in understanding the dynamics of lower solar atmosphere, complementing such oscillations already reported in the upper solar atmosphere (e.g., hot flaring loops).Comment: 13 pages, 4 figures, accepted in MNRA

    The hot Gamma-Doradus and Maia stars

    Full text link
    The hot γ\gamma~Doradus stars have multiple low frequencies characteristic of γ\gamma~Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ\gamma~Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ\delta~Sct stars also have low frequencies, there is no sign of high frequencies in hot γ\gamma~Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β\beta~Cep and δ\delta~Sct stars, but lie between the red edge of the β\beta~Cep and the blue edge of the δ\delta~Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.Comment: 10 pages, 8 figures, 2016, MNRAS, 460, 131

    Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    Get PDF
    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5 yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f2 has an amplitude of a few mmag, 20–45 times lower than the main radial mode with frequency f1. The two oscillations have a period ratio of P2/P1 = 0.612–0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is non-radial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P2/P1 ∼ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f2 at ∼1/2f2 and at ∼3/2f2. This is a signature of period doubling of the secondary oscillation, and is the first detection of period doubling in RRc stars. The amplitudes and phases of f2 and its subharmonics are variable on a time-scale of 10–200 d. The dominant radial mode also shows variations on the same time-scale, but with much smaller amplitude. In three Kepler RRc stars we detect additional periodicities, with amplitudes below 1 mmag, that must correspond to non-radial g-modes. Such modes never before have been observed in RR Lyrae variables
    corecore