2,006 research outputs found
Phase field analysis of eutectic breakdown.
In this paper an isotropic multi-phase-field model is extended to include the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against a published single phase model. Results from this model are compared against results from other multi-phase models, additionally this model is used to examine the break down of a regular two dimensional eutectic into a single phase dendritic front
Phase-field simulations of solidification in binary and ternary systems using a finite element method
We present adaptive finite element simulations of dendritic and eutectic
solidification in binary and ternary alloys. The computations are based on a
recently formulated phase-field model that is especially appropriate for
modelling non-isothermal solidification in multicomponent multiphase systems.
In this approach, a set of governing equations for the phase-field variables,
for the concentrations of the alloy components and for the temperature has to
be solved numerically, ensuring local entropy production and the conservation
of mass and inner energy. To efficiently perform numerical simulations, we
developed a numerical scheme to solve the governing equations using a finite
element method on an adaptive non-uniform mesh with highest resolution in the
regions of the phase boundaries. Simulation results of the solidification in
ternary NiCuCr alloys are presented investigating the
influence of the alloy composition on the growth morphology and on the growth
velocity. A morphology diagram is obtained that shows a transition from a
dendritic to a globular structure with increasing Cr concentrations.
Furthermore, we comment on 2D and 3D simulations of binary eutectic phase
transformations. Regular oscillatory growth structures are observed combined
with a topological change of the matrix phase in 3D. An outlook for the
application of our methods to describe AlCu eutectics is given.Comment: 5 pages, 3 figures, To appear in the proceedings of 14th
"International Conference on Crystal Growth", ICCG-14, 9-13 August 2004
Grenoble Franc
Description of hard sphere crystals and crystal-fluid interfaces: a critical comparison between density functional approaches and a phase field crystal model
In materials science the phase field crystal approach has become popular to
model crystallization processes. Phase field crystal models are in essence
Landau-Ginzburg-type models, which should be derivable from the underlying
microscopic description of the system in question. We present a study on
classical density functional theory in three stages of approximation leading to
a specific phase field crystal model, and we discuss the limits of
applicability of the models that result from these approximations. As a test
system we have chosen the three--dimensional suspension of monodisperse hard
spheres. The levels of density functional theory that we discuss are
fundamental measure theory, a second-order Taylor expansion thereof, and a
minimal phase-field crystal model. We have computed coexistence densities,
vacancy concentrations in the crystalline phase, interfacial tensions and
interfacial order parameter profiles, and we compare these quantities to
simulation results. We also suggest a procedure to fit the free parameters of
the phase field crystal model.Comment: 21 page
Phase Field Modeling of Fracture and Stress Induced Phase Transitions
We present a continuum theory to describe elastically induced phase
transitions between coherent solid phases. In the limit of vanishing elastic
constants in one of the phases, the model can be used to describe fracture on
the basis of the late stage of the Asaro-Tiller-Grinfeld instability. Starting
from a sharp interface formulation we derive the elastic equations and the
dissipative interface kinetics. We develop a phase field model to simulate
these processes numerically; in the sharp interface limit, it reproduces the
desired equations of motion and boundary conditions. We perform large scale
simulations of fracture processes to eliminate finite-size effects and compare
the results to a recently developed sharp interface method. Details of the
numerical simulations are explained, and the generalization to multiphase
simulations is presented
Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study
© The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International
Early life programming and neurodevelopmental disorders.
For more than a century, clinical investigators have focused on early life as a source of adult psychopathology. Early theories about psychic conflict and toxic parenting have been replaced by more recent formulations of complex interactions of genes and environment. Although the hypothesized mechanisms have evolved, a central notion remains: early life is a period of unique sensitivity during which experience confers enduring effects. The mechanisms for these effects remain almost as much a mystery today as they were a century ago. Recent studies suggest that maternal diet can program offspring growth and metabolic pathways, altering lifelong susceptibility to diabetes and obesity. If maternal psychosocial experience has similar programming effects on the developing offspring, one might expect a comparable contribution to neurodevelopmental disorders, including affective disorders, schizophrenia, autism, and eating disorders. Due to their early onset, prevalence, and chronicity, some of these disorders, such as depression and schizophrenia, are among the highest causes of disability worldwide according to the World Health Organization 2002 report. Consideration of the early life programming and transcriptional regulation in adult exposures supports a critical need to understand epigenetic mechanisms as a critical determinant in disease predisposition. Incorporating the latest insight gained from clinical and epidemiological studies with potential epigenetic mechanisms from basic research, the following review summarizes findings from a workshop on Early Life Programming and Neurodevelopmental Disorders held at the University of Pennsylvania in 2009
Eutectic colony formation: A phase field study
Eutectic two-phase cells, also known as eutectic colonies, are commonly
observed during the solidification of ternary alloys when the composition is
close to a binary eutectic valley. In analogy with the solidification cells
formed in dilute binary alloys, colony formation is triggered by a
morphological instability of a macroscopically planar eutectic solidification
front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary
eutectic with a dilute ternary impurity and we investigate by dynamical
simulations both the initial linear regime of this instability, and the
subsequent highly nonlinear evolution of the interface that leads to fully
developed two-phase cells with a spacing much larger than the lamellar spacing.
We find a good overall agreement with our recent linear stability analysis [M.
Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a
destabilization of the front by long-wavelength modes that may be stationary or
oscillatory. A fine comparison, however, reveals that the assumption commonly
attributed to Cahn that lamella grow perpendicular to the envelope of the
solidification front is weakly violated in the phase-field simulations. We show
that, even though weak, this violation has an important quantitative effect on
the stability properties of the eutectic front. We also investigate the
dynamics of fully developed colonies and find that the large-scale envelope of
the composite eutectic front does not converge to a steady state, but exhibits
cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
Microstructure Characterization of Battery Materials Based on Voxelated Image Data: Computation of Active Surface Area and Tortuosity
The reliable computation of microstructure metrics such as specific surface area and tortuosity factors is key to bridge the gap between the battery microscale and fast, homogenized cell models. In this work, we present an approach to compute the surface area of phases based on pixelated image data which is both easy-to-implement and computationally efficient. The concept is inspired from the diffuse surface representation in phase-field methods. Subsequently, the approach is validated and compared with common python libraries on two benchmark cases and actual battery microstructure data. The results underline the reliability and fast computational performance of the approach. Furthermore, the concept of through-feature connectivity in pixelated image data is introduced and explored to quantify the reliability of tortuosity factor computations. Overall, this work enhances the computational tools to bridge the scale from battery microstructures to cell models and gives an overview of state-of-the-art methodology. The developed code is published to further accelerate the scientific progress in this field
Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure
Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al
- …
