7,034 research outputs found

    Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model

    Full text link
    We derive and prove exponential and form factor expansions of the row correlation function and the diagonal correlation function of the two dimensional Ising model

    High order Fuchsian equations for the square lattice Ising model: χ(6)\chi^{(6)}

    Full text link
    This paper deals with χ~(6)\tilde{\chi}^{(6)}, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for χ~(6)\tilde{\chi}^{(6)}. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the "depleted" series Φ(6)=χ~(6)23χ~(4)+245χ~(2)\Phi^{(6)}=\tilde{\chi}^{(6)} - {2 \over 3} \tilde{\chi}^{(4)} + {2 \over 45} \tilde{\chi}^{(2)}. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The "depleted" differential operator is shown to have a structure similar to the corresponding operator for χ~(5)\tilde{\chi}^{(5)}. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral EE. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page

    Joint determination of orbits of spacecraft and moons of Mars by optical sighting of the moons

    Get PDF
    Scanning optical system to provide attitude and trajectory of unmanned spacecraft during orbit about Mar

    Experimental mathematics on the magnetic susceptibility of the square lattice Ising model

    Full text link
    We calculate very long low- and high-temperature series for the susceptibility χ\chi of the square lattice Ising model as well as very long series for the five-particle contribution χ(5)\chi^{(5)} and six-particle contribution χ(6)\chi^{(6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150000 CPU hours on computer clusters. For χ(5)\chi^{(5)} 10000 terms of the series are calculated {\it modulo} a single prime, and have been used to find the linear ODE satisfied by χ(5)\chi^{(5)} {\it modulo} a prime. A diff-Pad\'e analysis of 2000 terms series for χ(5)\chi^{(5)} and χ(6)\chi^{(6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the nn-particle components of the susceptibility, up to a small set of ``additional'' singularities. We find the presence of singularities at w=1/2w=1/2 for the linear ODE of χ(5)\chi^{(5)}, and w2=1/8w^2= 1/8 for the ODE of χ(6)\chi^{(6)}, which are {\it not} singularities of the ``physical'' χ(5)\chi^{(5)} and χ(6),\chi^{(6)}, that is to say the series-solutions of the ODE's which are analytic at w=0w =0. Furthermore, analysis of the long series for χ(5)\chi^{(5)} (and χ(6)\chi^{(6)}) combined with the corresponding long series for the full susceptibility χ\chi yields previously conjectured singularities in some χ(n)\chi^{(n)}, n7n \ge 7. We also present a mechanism of resummation of the logarithmic singularities of the χ(n)\chi^{(n)} leading to the known power-law critical behaviour occurring in the full χ\chi, and perform a power spectrum analysis giving strong arguments in favor of the existence of a natural boundary for the full susceptibility χ\chi.Comment: 54 pages, 2 figure

    About a possible 3rd order phase transition at T=0 in 4D gluodynamics

    Full text link
    We revisit the question of the convergence of lattice perturbation theory for a pure SU(3) lattice gauge theory in 4 dimensions. Using a series for the average plaquette up to order 10 in the weak coupling parameter beta^{-1}, we show that the analysis of the extrapolated ratio and the extrapolated slope suggests the possibility of a non-analytical power behavior of the form (1/\beta -1/5.7(1))^{1.0(1)}, in agreement with another analysis based on the same asumption. This would imply that the third derivative of the free energy density diverges near beta =5.7. We show that the peak in the third derivative of the free energy present on 4^4 lattices disappears if the size of the lattice is increased isotropically up to a 10^4 lattice. On the other hand, on 4 x L^3 lattices, a jump in the third derivative persists when L increases. Its location coincides with the onset of a non-zero average for the Polyakov loop. We show that the apparent contradiction at zero temperature can be resolved by moving the singularity in the complex 1/\beta plane. If the imaginary part of the location of the singularity Gamma is within the range 0.001< Gamma < 0.01, it is possible to limit the second derivative of P within an acceptable range without affecting drastically the behavior of the perturbative coefficients. We discuss the possibility of checking the existence of these complex singularities by using the strong coupling expansion or calculating the zeroes of the partition function.Comment: 7 pages, 9 figures, contains a resolution of the main paradox and a discussion of possible check

    Critical behaviour of the two-dimensional Ising susceptibility

    Full text link
    We report computations of the short-distance and the long-distance (scaling) contributions to the square-lattice Ising susceptibility in zero field close to T_c. Both computations rely on the use of nonlinear partial difference equations for the correlation functions. By summing the correlation functions, we give an algorithm of complexity O(N^6) for the determination of the first N series coefficients. Consequently, we have generated and analysed series of length several hundred terms, generated in about 100 hours on an obsolete workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2. To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4} singularity contains only integer powers of \tau. The presence of irrelevant variables in the scaling function is clearly evident, with contributions of distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being identified.Comment: 11 pages, REVTex

    Study of physiological tolerance to centrifugation Final report

    Get PDF
    Physiological effects and acceleration tolerances after weightlessness based on space environment simulation with human centrifuges and bed res

    The 1999 Heineman Prize Address- Integrable models in statistical mechanics: The hidden field with unsolved problems

    Full text link
    In the past 30 years there have been extensive discoveries in the theory of integrable statistical mechanical models including the discovery of non-linear differential equations for Ising model correlation functions, the theory of random impurities, level crossing transitions in the chiral Potts model and the use of Rogers-Ramanujan identities to generalize our concepts of Bose/Fermi statistics. Each of these advances has led to the further discovery of major unsolved problems of great mathematical and physical interest. I will here discuss the mathematical advances, the physical insights and extraordinary lack of visibility of this field of physics.Comment: Text of the 1999 Heineman Prize address given March 24 at the Centenial Meeting of the American Physical Society in Atlanta 20 pages in latex, references added and typos correcte

    Feasibility study for a scanning celestial attitude determination system SCADS on the IMP spacecraft Final report

    Get PDF
    System design analysis to establish feasibility of using electro-optical celestial scanning sensor on IMP spacecraft for determination of spacecraft attitude by star measurement

    Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0

    Full text link
    We simulate self-avoiding walks on a cubic lattice and determine the second virial coefficient for walks of different lengths. This allows us to determine the critical value of the renormalized four-point coupling constant in the three-dimensional N-vector universality class for N=0. We obtain g* = 1.4005(5), where g is normalized so that the three-dimensional field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As a byproduct, we also obtain precise estimates of the interpenetration ratio Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page
    corecore