7,034 research outputs found
Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model
We derive and prove exponential and form factor expansions of the row
correlation function and the diagonal correlation function of the two
dimensional Ising model
High order Fuchsian equations for the square lattice Ising model:
This paper deals with , the six-particle contribution to
the magnetic susceptibility of the square lattice Ising model. We have
generated, modulo a prime, series coefficients for . The
length of the series is sufficient to produce the corresponding Fuchsian linear
differential equation (modulo a prime). We obtain the Fuchsian linear
differential equation that annihilates the "depleted" series
. The factorization of the corresponding differential
operator is performed using a method of factorization modulo a prime introduced
in a previous paper. The "depleted" differential operator is shown to have a
structure similar to the corresponding operator for . It
splits into factors of smaller orders, with the left-most factor of order six
being equivalent to the symmetric fifth power of the linear differential
operator corresponding to the elliptic integral . The right-most factor has
a direct sum structure, and using series calculated modulo several primes, all
the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page
Joint determination of orbits of spacecraft and moons of Mars by optical sighting of the moons
Scanning optical system to provide attitude and trajectory of unmanned spacecraft during orbit about Mar
Experimental mathematics on the magnetic susceptibility of the square lattice Ising model
We calculate very long low- and high-temperature series for the
susceptibility of the square lattice Ising model as well as very long
series for the five-particle contribution and six-particle
contribution . These calculations have been made possible by the
use of highly optimized polynomial time modular algorithms and a total of more
than 150000 CPU hours on computer clusters. For 10000 terms of the
series are calculated {\it modulo} a single prime, and have been used to find
the linear ODE satisfied by {\it modulo} a prime.
A diff-Pad\'e analysis of 2000 terms series for and
confirms to a very high degree of confidence previous conjectures about the
location and strength of the singularities of the -particle components of
the susceptibility, up to a small set of ``additional'' singularities. We find
the presence of singularities at for the linear ODE of ,
and for the ODE of , which are {\it not} singularities
of the ``physical'' and that is to say the
series-solutions of the ODE's which are analytic at .
Furthermore, analysis of the long series for (and )
combined with the corresponding long series for the full susceptibility
yields previously conjectured singularities in some , .
We also present a mechanism of resummation of the logarithmic singularities
of the leading to the known power-law critical behaviour occurring
in the full , and perform a power spectrum analysis giving strong
arguments in favor of the existence of a natural boundary for the full
susceptibility .Comment: 54 pages, 2 figure
About a possible 3rd order phase transition at T=0 in 4D gluodynamics
We revisit the question of the convergence of lattice perturbation theory for
a pure SU(3) lattice gauge theory in 4 dimensions. Using a series for the
average plaquette up to order 10 in the weak coupling parameter beta^{-1}, we
show that the analysis of the extrapolated ratio and the extrapolated slope
suggests the possibility of a non-analytical power behavior of the form
(1/\beta -1/5.7(1))^{1.0(1)}, in agreement with another analysis based on the
same asumption. This would imply that the third derivative of the free energy
density diverges near beta =5.7. We show that the peak in the third derivative
of the free energy present on 4^4 lattices disappears if the size of the
lattice is increased isotropically up to a 10^4 lattice. On the other hand, on
4 x L^3 lattices, a jump in the third derivative persists when L increases. Its
location coincides with the onset of a non-zero average for the Polyakov loop.
We show that the apparent contradiction at zero temperature can be resolved by
moving the singularity in the complex 1/\beta plane. If the imaginary part of
the location of the singularity Gamma is within the range 0.001< Gamma < 0.01,
it is possible to limit the second derivative of P within an acceptable range
without affecting drastically the behavior of the perturbative coefficients. We
discuss the possibility of checking the existence of these complex
singularities by using the strong coupling expansion or calculating the zeroes
of the partition function.Comment: 7 pages, 9 figures, contains a resolution of the main paradox and a
discussion of possible check
Critical behaviour of the two-dimensional Ising susceptibility
We report computations of the short-distance and the long-distance (scaling)
contributions to the square-lattice Ising susceptibility in zero field close to
T_c. Both computations rely on the use of nonlinear partial difference
equations for the correlation functions. By summing the correlation functions,
we give an algorithm of complexity O(N^6) for the determination of the first N
series coefficients. Consequently, we have generated and analysed series of
length several hundred terms, generated in about 100 hours on an obsolete
workstation. In terms of a temperature variable, \tau, linear in T/T_c-1, the
short-distance terms are shown to have the form \tau^p(ln|\tau|)^q with p>=q^2.
To O(\tau^14) the long-distance part divided by the leading \tau^{-7/4}
singularity contains only integer powers of \tau. The presence of irrelevant
variables in the scaling function is clearly evident, with contributions of
distinct character at leading orders |\tau|^{9/4} and |\tau|^{17/4} being
identified.Comment: 11 pages, REVTex
Study of physiological tolerance to centrifugation Final report
Physiological effects and acceleration tolerances after weightlessness based on space environment simulation with human centrifuges and bed res
The 1999 Heineman Prize Address- Integrable models in statistical mechanics: The hidden field with unsolved problems
In the past 30 years there have been extensive discoveries in the theory of
integrable statistical mechanical models including the discovery of non-linear
differential equations for Ising model correlation functions, the theory of
random impurities, level crossing transitions in the chiral Potts model and the
use of Rogers-Ramanujan identities to generalize our concepts of Bose/Fermi
statistics. Each of these advances has led to the further discovery of major
unsolved problems of great mathematical and physical interest. I will here
discuss the mathematical advances, the physical insights and extraordinary lack
of visibility of this field of physics.Comment: Text of the 1999 Heineman Prize address given March 24 at the
Centenial Meeting of the American Physical Society in Atlanta 20 pages in
latex, references added and typos correcte
Feasibility study for a scanning celestial attitude determination system SCADS on the IMP spacecraft Final report
System design analysis to establish feasibility of using electro-optical celestial scanning sensor on IMP spacecraft for determination of spacecraft attitude by star measurement
Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0
We simulate self-avoiding walks on a cubic lattice and determine the second
virial coefficient for walks of different lengths. This allows us to determine
the critical value of the renormalized four-point coupling constant in the
three-dimensional N-vector universality class for N=0. We obtain g* =
1.4005(5), where g is normalized so that the three-dimensional
field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As
a byproduct, we also obtain precise estimates of the interpenetration ratio
Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page
- …
