553 research outputs found

    Disorder-induced double resonant Raman process in graphene

    Get PDF
    An analytical study is presented of the double resonant Raman scattering process in graphene, responsible for the D and D^{\prime} features in the Raman spectra. This work yields analytical expressions for the D and D^{\prime} integrated Raman intensities that explicitly show the dependencies on laser energy, defect concentration, and electronic lifetime. Good agreement is obtained between the analytical results and experimental measurements on samples with increasing defect concentrations and at various laser excitation energies. The use of Raman spectroscopy to identify the nature of defects is discussed. Comparison between the models for the edge-induced and the disorder-induced D band intensity suggests that edges or grain boundaries can be distinguished from disorder by the different dependence of their Raman intensity on laser excitation energy. Similarly, the type of disorder can potentially be identified not only by the intensity ratio ID/IDI_{\mathrm{D}}/I_{\mathrm{D}^{\prime}}, but also by its laser energy dependence. Also discussed is a quantitative analysis of quantum interference effects of the graphene wavefunctions, which determine the most important phonon wavevectors and scattering processes responsible for the D and D^{\prime} bands.Comment: 10 pages, 4 figure

    Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars

    Full text link
    It is generally accepted that the atmospheres of cool/lukewarm stars of spectral types A and later are described well by LTE model atmospheres, while the O-type stars require a detailed treatment of NLTE effects. Here model atmosphere structures, spectral energy distributions and synthetic spectra computed with ATLAS9/SYNTHE and TLUSTY/SYNSPEC, and results from a hybrid method combining LTE atmospheres and NLTE line-formation with DETAIL/SURFACE are compared. Their ability to reproduce observations for effective temperatures between 15000 and 35000 K are verified. Strengths and weaknesses of the different approaches are identified. Recommendations are made as to how to improve the models in order to derive unbiased stellar parameters and chemical abundances in future applications, with special emphasis on Gaia science.Comment: 12 pages, 8 figures; accepted for publication in Journal of Physics: Conference Series, GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Er

    Interaction Driven Quantum Hall Wedding cake-like Structures in Graphene Quantum Dots

    Get PDF
    Quantum-relativistic matter is ubiquitous in nature; however it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a table-top prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we provide a spatial visualization of the interplay between spatial and magnetic confinement in a circular graphene resonator. We directly observe the development of a multi-tiered "wedding cake"-like structure of concentric regions of compressible/incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can therefore yield insights into the behaviour of quantum-relativistic matter under extreme conditions

    Creating and Probing Electron Whispering Gallery Modes in Graphene

    Get PDF
    Designing high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Previous approaches, e.g. the seminal nanometer-sized quantum corrals, depend on careful positioning of adatoms at clean surfaces. Here we demonstrate an entirely different approach, inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's unique properties, namely gate-tunable light-like carriers, we create Whispering Gallery Mode (WGM) resonators defined by circular pn-junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range, independently and in situ. The confined modes, revealed through characteristic resonances in the tunneling spectrum, originate from Klein scattering at pn junction boundaries. The WGM-type confinement and resonances are a new addition to the quantum electron-optics toolbox, paving the way to real-world electronic lenses and resonators

    Anomalous Proximity Effect in Underdoped YBaCuO Josephson Junctions

    Full text link
    Josephson junctions were photogenerated in underdoped thin films of the YBa2_2Cu3_3O6+x_{6+x} family using a near-field scanning optical microscope. The observation of the Josephson effect for separations as large as 100 nm between two wires indicates the existence of an anomalously large proximity effect and show that the underdoped insulating material in the gap of the junction is readily perturbed into the superconducting state. The critical current of the junctions was found to be consistent with the conventional Josephson relationship. This result constrains the applicability of SO(5) theory to explain the phase diagram of high critical temperature superconductors.Comment: 11 pages, 4 figure

    Interaction-driven quantum Hall wedding cake–like structures in graphene quantum dots

    Get PDF
    Quantum-relativistic matter is ubiquitous in nature; however, it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a tabletop prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we directly visualize the interplay between spatial and magnetic confinement in a circular graphene resonator as atomic-like shell states condense into Landau levels. We directly observe the development of a “wedding cake”–like structure of concentric regions of compressible-incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can, therefore, yield insights into the behavior of quantum-relativistic matter under extreme conditions.United States. National Science Foundation. STC Center for Integrated Quantum Materials (Award 1231319)United States. Army Research Office. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001

    Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms

    Full text link
    We analyze the angular dependence of the irreversible magnetization of YBa2_2Cu3_3O7_7 crystals with columnar defects inclined from the c-axis. At high fields a sharp maximum centered at the tracks' direction is observed. At low fields we identify a lock-in phase characterized by an angle-independent pinning strength and observe an angular shift of the peak towards the c-axis that originates in the material anisotropy. The interplay among columnar defects, twins and ab-planes generates a variety of staircase structures. We show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure

    CRIRES-POP: A library of high resolution spectra in the near-infrared

    Full text link
    New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 mu. We aim to provide a library of observed high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESO's VLT covering the range from 0.97 to 5.3 mu at high spectral resolution. Accurate wavelength calibration and correction for of telluric lines were performed by fitting synthetic transmission spectra for the Earth's atmosphere to each spectrum individually. We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples of finally reduced spectra are presented. This publication will serve as a reference paper to introduce the library to the community and explore the extensive amount of material.Comment: accepted for publication in A&A; see also the project webpage http://www.univie.ac.at/crirespo

    Piketty's Calibration Economics: Inequality and the Dissolution of Solutions?

    Get PDF
    © 2015 Taylor & Francis. Abstract: By popularising interest in inequality, Thomas Piketty's Capital in the Twenty-First Century has made a significant contribution. It has helped to change the basic terms of debate regarding wealth and income. However, Capital exhibits several weaknesses. The overall statement of Piketty's 3 laws tends to confuse the reader by conflating capital with all forms of wealth, and capital with the current market valuation of wealth assets. The whole creates a form of empiricism by metrics or calibration. The aggregation also lends itself to data as history rather than as historically grounded explanation of evidence. Concomitantly, it lacks a theorisation of capitalism, of power, of the state, of social movements, and of social transformations. This affects the way in which possible solutions to inequality are conceived. However, it does provoke further grounds for ethical counterargument productive of more progressive solutions to the problems it highlights
    corecore