754 research outputs found
Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential.
We report ZnO nanowire/nanowall growth using a two-step vapour phase transport method on a-plane sapphire. X-ray diffraction and scanning electron microscopy data establish that the nanostructures are vertically well-aligned with c-axis normal to the substrate, and have a very low rocking curve width. Photoluminescence data at low temperatures demonstrate the exceptionally high optical quality of these structures, with intense emission and narrow bound exciton linewidths. We observe a high energy excitonic emission at low temperatures close to the band-edge which we assign to the surface exciton in ZnO at ~ 3.366 eV, the first time this feature has been reported in ZnO nanorod systems. This assignment is consistent with the large surface to volume ratio of the nanowire systems and indicates that this large ratio has a significant effect on the luminescence even at low temperatures. The band-edge intensity decays rapidly with increasing temperature compared to bulk single crystal material, indicating a strong temperature-activated non-radiative mechanism peculiar to the nanostructures. No evidence is seen of the free exciton emission due to exciton delocalisation in the nanostructures with increased temperature, unlike the behaviour in bulk material. The use of such nanostructures in room temperature optoelectronic devices appears to be dependent on the control or elimination of such surface effects
Towards a Tetravalent Chemistry of Colloids
We propose coating spherical particles or droplets with anisotropic
nano-sized objects to allow micron-scale colloids to link or functionalize with
a four-fold valence, similar to the sp3 hybridized chemical bonds associated
with, e.g., carbon, silicon and germanium. Candidates for such coatings include
triblock copolymers, gemini lipids, metallic or semiconducting nanorods and
conventional liquid crystal compounds. We estimate the size of the relevant
nematic Frank constants, discuss how to obtain other valences and analyze the
thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter
Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod
Current optical detection schemes for single molecules require light
absorption, either to produce fluorescence or direct absorption signals. This
severely limits the range of molecules that can be detected, because most
molecules are purely refractive. Metal nanoparticles or dielectric resonators
detect non-absorbing molecules by a resonance shift in response to a local
perturbation of the refractive index, but neither has reached single-protein
sensitivity. The most sensitive plasmon sensors to date detect single molecules
only when the plasmon shift is amplified by a highly polarizable label or by a
localized precipitation reaction on the particle's surface. Without
amplification, the sensitivity only allows for the statistical detection of
single molecules. Here we demonstrate plasmonic detection of single molecules
in realtime, without the need for labeling or amplification. We monitor the
plasmon resonance of a single gold nanorod with a sensitive photothermal assay
and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art
plasmon sensors. We find that the sensitivity of the sensor is intrinsically
limited due to spectral diffusion of the SPR. We believe this is the first
optical technique that detects single molecules purely by their refractive
index, without any need for photon absorption by the molecule. The small size,
bio-compatibility and straightforward surface chemistry of gold nanorods may
open the way to the selective and local detection of purely refractive proteins
in live cells
Chiral plasmonics of self-assembled nanorod dimers
Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four
or more different constituent nanoparticles. Smaller number of particles and different chiral geometries
taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral
plasmonic effects, facilitate development of their theory, and stimulate practical applications of
chiroplasmonics. Here we show that gold nanorods self-assemble into side-by-side orientated pairs and
‘‘ladders’’ in which chiral properties originate from the small dihedral angle between them. Spontaneous
twisting of one nanorod versus the other one breaks the centrosymmetric nature of the parallel assemblies.
Two possible enantiomeric conformations with positive and negative dihedral angles were obtained with
different assembly triggers. The chiral nature of the angled nanorod pairs was confirmed by 4p full space
simulations and the first example of single-particle CD spectroscopy. Self-assembled nanorod pairs and
‘‘ladders’’ enable the development of chiral metamaterials, (bio)sensors, and new catalytic processes
Atomic-scale confinement of optical fields
In the presence of matter there is no fundamental limit preventing
confinement of visible light even down to atomic scales. Achieving such
confinement and the corresponding intensity enhancement inevitably requires
simultaneous control over atomic-scale details of material structures and over
the optical modes that such structures support. By means of self-assembly we
have obtained side-by-side aligned gold nanorod dimers with robust
atomically-defined gaps reaching below 0.5 nm. The existence of
atomically-confined light fields in these gaps is demonstrated by observing
extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer
eigenmodes of more than 800 meV in white-light scattering experiments. Our
results open new perspectives for atomically-resolved spectroscopic imaging,
deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the
realization of novel quantum-optical devices
Precious metal core-shell spindles
A simplified method to produce spindle-shaped particles with a hematite core and a silica shell is described. The silica shell can, in turn, serve as the substrate for an outer coating of Ag or Au nanoparticles. The resulting multilayer core-shell particles display a flexible optical extinction spectrum, due primarily to the sensitivity of their plasmon resonance to the morphology of the precious metal outer coating. © 2007 American Chemical Society
Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium-oxygen batteries
© 2015 Nature Publishing Group All rights reserved. Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au NCs can significantly reduce the charge potential and have high reversible capacities. In particular, TOH Au NC catalysts demonstrated the lowest charge-discharge overpotential and the highest capacity of ∼ 20 298 mA h g-1. The correlation between the different Au NC crystal planes and their electrochemical catalytic performances was revealed: high-index facets exhibit much higher catalytic activity than the low-index planes, as the high-index planes have a high surface energy because of their large density of atomic steps, ledges and kinks, which can provide a high density of reactive sites for catalytic reactions
Water affinity guided tunable superhydrophobicity and optimized wettability of selected natural minerals
Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment
Gold nanohexapods represent a novel class of optically tunable nanostructures consisting of an octahedral core and six arms grown on its vertices. By controlling the length of the arms, their localized surface plasmon resonance peaks could be tuned from the visible to the near-infrared region for deep penetration of light into soft tissues. Herein we compare the in vitro and in vivo capabilities of Au nanohexapods as photothermal transducers for theranostic applications by benchmarking against those of Au nanorods and nanocages. While all these Au nanostructures could absorb and convert near-infrared light into heat, Au nanohexapods exhibited the highest cellular uptake and the lowest cytotoxicity in vitro for both the as-prepared and PEGylated nanostructures. In vivo pharmacokinetic studies showed that the PEGylated Au nanohexapods had significant blood circulation and tumor accumulation in a mouse breast cancer model. Following photothermal treatment, substantial heat was produced in situ and the tumor metabolism was greatly reduced for all these Au nanostructures, as determined with ^(18)F-flourodeoxyglucose positron emission tomography/computed tomography (^(18)F-FDG PET/CT). Combined together, we can conclude that Au nanohexapods are promising candidates for cancer theranostics in terms of both photothermal destruction and contrast-enhanced diagnosis
- …
