396 research outputs found
A van der Waals free energy in electrolytes revisited
A system of three electrolytes separated by two parallel planes is
considered. Each region is described by a dielectric constant and a Coulomb
fluid in the Debye-H\"uckel regime. In their book Dispersion Forces, Mahanty
and Ninham have given the van der Waals free energy of this system. We rederive
this free energy by a different method, using linear response theory and the
electrostatic Maxwell stress tensor for obtaining the dispersion force.Comment: 7 pages. PACS numbers updated. References update
Retardation turns the van der Waals attraction into Casimir repulsion already at 3 nm
Casimir forces between surfaces immersed in bromobenzene have recently been
measured by Munday et al. Attractive Casimir forces were found between gold
surfaces. The forces were repulsive between gold and silica surfaces. We show
the repulsion is due to retardation effects. The van der Waals interaction is
attractive at all separations. The retardation driven repulsion sets in already
at around 3 nm. To our knowledge retardation effects have never been found at
such a small distance before. Retardation effects are usually associated with
large distances
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
The influence of ion binding and ion specific potentials on the double layer pressure between charged bilayers at low salt concentrations
Measurements of surface forces between double-chained cationic bilayers adsorbed onto molecularly smooth mica surfaces across different millimolar salt solutions have revealed a large degree of ion specificity [Pashley et al., J. Phys. Chem. 90, 1637 (1986)]. This has been interpreted in terms of highly specific anion binding to the adsorbed bilayers. We show here that inclusion in the double layer theory of nonspecific ion binding and ion specific nonelectrostatic potentials acting between ions and the two surfaces can account for the phenomenon. It also gives the right Hofmeister series for the double layer pressure.M.B. thanks the Swedish Research Council and the German
Arbeitsgemeinschaft industrieller Forschungvereinigungen
Otto von Guericke e.V. AiF for financial support.
E.R.A.L. and F.W.T. thank FAPERJ and CNPq the Brazilian
Agencies for financial support
Ultrathin Metallic Coatings Can Induce Quantum Levitation between Nanosurfaces
There is an attractive Casimir-Lifshitz force between two silica surfaces in
a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin
(5-50{\AA}) metallic nanocoating to one of the surfaces results in repulsive
Casimir-Lifshitz forces above a critical separation. The onset of such quantum
levitation comes at decreasing separations as the film thickness decreases.
Remarkably the effect of retardation can turn attraction into repulsion. From
that we explain how an ultrathin metallic coating may prevent
nanoelectromechanical systems from crashing together.Comment: 4 pages, 5 figure
Body-assisted van der Waals interaction between two atoms
Using fourth-order perturbation theory, a general formula for the van der
Waals potential of two neutral, unpolarized, ground-state atoms in the presence
of an arbitrary arrangement of dispersing and absorbing magnetodielectric
bodies is derived. The theory is applied to two atoms in bulk material and in
front of a planar multilayer system, with special emphasis on the cases of a
perfectly reflecting plate and a semi-infinite half space. It is demonstrated
that the enhancement and reduction of the two-atom interaction due to the
presence of a perfectly reflecting plate can be understood, at least in the
nonretarded limit, by using the method of image charges. For the semi-infinite
half space, both analytical and numerical results are presented.Comment: 17 pages, 9 figure
Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation
The adsorption of large ions from solution to a charged surface is
investigated theoretically. A generalized Poisson--Boltzmann equation, which
takes into account the finite size of the ions is presented. We obtain
analytical expressions for the electrostatic potential and ion concentrations
at the surface, leading to a modified Grahame equation. At high surface charge
densities the ionic concentration saturates to its maximum value. Our results
are in agreement with recent experiments.Comment: 4 pages, 2 figure
Sign of the Casimir-Polder interaction between atoms and oil-water interfaces: Subtle dependence on dielectric properties
We demonstrate that Casimir-Polder energies between noble gas atoms
(dissolved in water) and oil-water interfaces are highly surface specific. Both
repulsion (e.g. hexane) and attraction (e.g. glycerine and cyclodecane) is
found with different oils. For several intermediate oils (e.g. hexadecane,
decane, and cyclohexane) both attraction and repulsion can be found in the same
system. Near these oil-water interfaces the interaction is repulsive in the
non-retarded limit and turns attractive at larger distances as retardation
becomes important. These highly surface specific interactions may have a role
to play in biological systems where the surface may be more or less accessible
to dissolved atoms.Comment: 5 pages, 6 figure
Field theoretic calculation of the surface tension for a model electrolyte system
We carry out the calculation of the surface tension for a model electrolyte
to first order in a cumulant expansion about a free field theory equivalent to
the Debye-H\"uckel approximation. In contrast with previous calculations, the
surface tension is calculated directly without recourse to integrating
thermodynamic relations. The system considered is a monovalent electrolyte with
a region at the interface, of width h, from which the ionic species are
excluded. In the case where the external dielectric constant epsilon_0 is
smaller than the electrolyte solution's dielectric constant epsilon we show
that the calculation at this order can be fully regularized. In the case where
h is taken to be zero the Onsager-Samaras limiting law for the excess surface
tension of dilute electrolyte solutions is recovered, with corrections coming
from a non-zero value of epsilon_0/epsilon.Comment: LaTeX, 14 pages, 3 figures, 1 tabl
- …
