1,543 research outputs found
Das Ende der Schuld? Die öffentliche Erinnerung an die zwei Weltkriege und die Befreiung der Konzentrationslager in Deutschland
Action potential energy efficiency varies among neuron types in vertebrates and invertebrates.
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost
Exploring the relationship between effective and reflective practice in applied sport psychology
This study offers an investigation into the concept of effective practice in applied sport psychology (ASP) with emphasis being placed upon the role that reflective practice may have in helping practitioners to develop the effectiveness of their service delivery. Focus groups (n = 2), consisting of accredited and trainee sport psychologists, were conducted to generate a working definition of effective practice, and discuss the concept of effectiveness development through engagement in reflective practices. The resulting definition encapsulated a multidimensional process involving reflection-on-practice. Initial support for the definition was gained through consensus validation involving accredited sport psychologists (n = 34) who agreed with the notion that although effectiveness is context specific it is related to activities designed to meet client needs. Reflective practice emerged as a vital component in the development of effectiveness, with participants highlighting that reflection is intrinsically linked to service delivery, and a key tool for experiential learning.</jats:p
Electron-electron interaction corrections to the thermal conductivity in disordered conductors
We evaluate the electron-electron interaction corrections to the electronic
thermal conductivity in a disordered conductor in the diffusive regime. We use
a diagrammatic many-body method analogous to that of Altshuler and Aronov for
the electrical conductivity. We derive results in one, two and three dimensions
for both the singlet and triplet channels, and in all cases find that the
Wiedemann-Franz law is violated.Comment: 8 pages, 2 figures Typos corrected in formulas (15) and (A.4) and
Table 1; discussion of previous work in introduction extended; reference
clarifying different definitions of parameter F adde
Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines
Accurate aerodynamic modelling of vertical-axis wind turbines poses a significant challenge. The rotation of the turbine induces large variations in the angle of attack of its blades that can manifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can result in impulsive changes to the aerodynamic loading. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of three different vertical-axis wind turbine configurations. It is known that vertical-axis turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a turbine with helically twisted blades delivers a relatively steady torque to the shaft. In this article, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades
Consequences of converting graded to action potentials upon neural information coding and energy efficiency
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation
Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines
Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclic motion of the blades induces large variations in the angle of attack on the blades that can manifest as dynamic stall. The present paper describes the application of a numerical model that is based on the vorticity transport formulation of the Navier–Stokes equations, to the prediction of the aerodynamics of a verticalaxis wind turbine that consists of three curved rotor blades that are twisted helically around the rotational axis of the rotor. The predicted variation of the power coefficient with tip speed ratio compares very favorably with experimental measurements. It is demonstrated that helical blade twist reduces the oscillation of the power coefficient that is an inherent feature of turbines with non-twisted blade configurations
Quantum bound states for a derivative nonlinear Schrodinger model and number theory
A derivative nonlinear Schrodinger model is shown to support localized N-body
bound states for several ranges (called bands) of the coupling constant eta.
The ranges of eta within each band can be completely determined using number
theoretic concepts such as Farey sequences and continued fractions. For N > 2,
the N-body bound states can have both positive and negative momentum. For eta >
0, bound states with positive momentum have positive binding energy, while
states with negative momentum have negative binding energy.Comment: Revtex, 7 pages including 2 figures, to appear in Mod. Phys. Lett.
Comparison of Langevin and Markov channel noise models for neuronal signal generation
The stochastic opening and closing of voltage-gated ion channels produces
noise in neurons. The effect of this noise on the neuronal performance has been
modelled using either approximate or Langevin model, based on stochastic
differential equations or an exact model, based on a Markov process model of
channel gating. Yet whether the Langevin model accurately reproduces the
channel noise produced by the Markov model remains unclear. Here we present a
comparison between Langevin and Markov models of channel noise in neurons using
single compartment Hodgkin-Huxley models containing either and
, or only voltage-gated ion channels. The performance of the
Langevin and Markov models was quantified over a range of stimulus statistics,
membrane areas and channel numbers. We find that in comparison to the Markov
model, the Langevin model underestimates the noise contributed by voltage-gated
ion channels, overestimating information rates for both spiking and non-spiking
membranes. Even with increasing numbers of channels the difference between the
two models persists. This suggests that the Langevin model may not be suitable
for accurately simulating channel noise in neurons, even in simulations with
large numbers of ion channels
Thermal transport in granular metals
We study the electron thermal transport in granular metals at large tunnel
conductance between the grains, and not too low a temperature , where is the mean energy level spacing for a single grain.
Taking into account the electron-electron interaction effects we calculate the
thermal conductivity and show that the Wiedemann-Franz law is violated for
granular metals. We find that interaction effects suppress the thermal
conductivity less than the electrical conductivity.Comment: Replaced with published versio
- …
