4,302 research outputs found
Exploring wind-driving dust species in cool luminous giants II. Constraints from photometry of M-type AGB stars
The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars
is usually attributed to a two-stage process: atmospheric levitation by
pulsation-induced shock waves, followed by radiative acceleration of newly
formed dust grains. The dust transfers momentum to the surrounding gas through
collisions and thereby triggers a general outflow. Radiation-hydrodynamical
models of M-type AGB stars suggest that these winds can be driven by photon
scattering -- in contrast to absorption -- on Fe-free silicate grains of sizes
0.1--1\,m. In this paper we study photometric constraints for wind-driving
dust species in M-type AGB stars, as part of an ongoing effort to identify
likely candidates among the grain materials observed in circumstellar
envelopes. To investigate the scenario of stellar winds driven by photon
scattering on dust, and to explore how different optical and chemical
properties of wind-driving dust species affect photometry we focus on two sets
of dynamical models atmospheres: (i) models using a detailed description for
the growth of MgSiO grains, taking into account both scattering and
absorption cross-sections when calculating the radiative acceleration, and (ii)
models using a parameterized dust description, constructed to represent
different chemical and optical dust properties. By comparing synthetic
photometry from these two sets of models to observations of M-type AGB stars we
can provide constraints on the properties of wind-driving dust species.
Photometry from wind models with a detailed description for the growth of
MgSiO grains reproduces well both the values and the time-dependent
behavior of observations of M-type AGB stars, providing further support for the
scenario of winds driven by photon scattering on dust.Comment: Accepted for publication in A&A. 15 pages, 14 figure
Synthetic Line Profiles for Pulsating Red Giants
Pulsation influences atmospheric structures of variable AGB stars (Miras)
considerably. Spectral lines of the CO dv=3 vibration-rotation bands (at
1.6mue) therefore have a very characteristic appearance in time series of
high-resolution spectra. Coupled to the light cycle they can be observed blue-
or red-shifted, for some phases even line doubling is found. This is being
explained by radial pulsations and shock fronts emerging in the atmospheres.
Based on dynamic model atmospheres synthetic CO line profiles were calculated
consistently, reproducing this scenario qualitatively.Comment: 4 pages, 2 figures, to be published in: Proc. of ESO Workshop
"High-resolution IR spectroscopy in Astronomy", ed. H.U. Kaeufl, R.
Siebenmorgen, A. Moorwood, ESO Astrophysics Symposia, Springer, p.283
added/changed references corrected typ
(Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces
We develop a kind of pregeometry consisting of a web of overlapping fuzzy
lumps which interact with each other. The individual lumps are understood as
certain closely entangled subgraphs (cliques) in a dynamically evolving network
which, in a certain approximation, can be visualized as a time-dependent random
graph. This strand of ideas is merged with another one, deriving from ideas,
developed some time ago by Menger et al, that is, the concept of probabilistic-
or random metric spaces, representing a natural extension of the metrical
continuum into a more microscopic regime. It is our general goal to find a
better adapted geometric environment for the description of microphysics. In
this sense one may it also view as a dynamical randomisation of the causal-set
framework developed by e.g. Sorkin et al. In doing this we incorporate, as a
perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor
changes added relating to previous wor
Modelling the atmosphere of the carbon-rich Mira RU Vir
Context. We study the atmosphere of the carbon-rich Mira RU Vir using the
mid-infrared high spatial resolution interferometric observations from
VLTI/MIDI. Aims. The aim of this work is to analyse the atmosphere of the
carbon-rich Mira RU Vir, with state of the art models, in this way deepening
the knowledge of the dynamic processes at work in carbon-rich Miras. Methods.
We compare spectro-photometric and interferometric measurements of this
carbon-rich Mira AGB star, with the predictions of different kinds of modelling
approaches (hydrostatic model atmospheres plus MOD-More Of Dusty,
self-consistent dynamic model atmospheres). A geometric model fitting tool is
used for a first interpretation of the interferometric data. Results. The
results show that a joint use of different kind of observations (photometry,
spectroscopy, interferometry) is essential to shed light on the structure of
the atmosphere of a carbon-rich Mira. The dynamic model atmospheres fit well
the ISO spectrum in the wavelength range {\lambda} = [2.9, 25.0] {\mu}m.
Nevertheless, a discrepancy is noticeable both in the SED (visible), and in the
visibilities (shape and level). A possible explanation are intra-/inter-cycle
variations in the dynamic model atmospheres as well as in the observations. The
presence of a companion star and/or a disk or a decrease of mass loss within
the last few hundred years cannot be excluded but are considered unlikely.Comment: 15 pages. Accepted in A&
(Quantum) Space-Time as a Statistical Geometry of Lumps in Random Networks
In the following we undertake to describe how macroscopic space-time (or
rather, a microscopic protoform of it) is supposed to emerge as a
superstructure of a web of lumps in a stochastic discrete network structure. As
in preceding work (mentioned below), our analysis is based on the working
philosophy that both physics and the corresponding mathematics have to be
genuinely discrete on the primordial (Planck scale) level. This strategy is
concretely implemented in the form of \tit{cellular networks} and \tit{random
graphs}. One of our main themes is the development of the concept of
\tit{physical (proto)points} or \tit{lumps} as densely entangled subcomplexes
of the network and their respective web, establishing something like
\tit{(proto)causality}. It may perhaps be said that certain parts of our
programme are realisations of some early ideas of Menger and more recent ones
sketched by Smolin a couple of years ago. We briefly indicate how this
\tit{two-story-concept} of \tit{quantum} space-time can be used to encode the
(at least in our view) existing non-local aspects of quantum theory without
violating macroscopic space-time causality.Comment: 35 pages, Latex, under consideration by CQ
Abundance analysis for long period variables. Velocity effects studied with O-rich dynamic model atmospheres
(abbreviated) Measuring the surface abundances of AGB stars is an important
tool for studying the effects of nucleosynthesis and mixing in the interior of
low- to intermediate mass stars during their final evolutionary phases. The
atmospheres of AGB stars can be strongly affected by stellar pulsation and the
development of a stellar wind, though, and the abundance determination of these
objects should therefore be based on dynamic model atmospheres. We investigate
the effects of stellar pulsation and mass loss on the appearance of selected
spectral features (line profiles, line intensities) and on the derived
elemental abundances by performing a systematic comparison of hydrostatic and
dynamic model atmospheres. High-resolution synthetic spectra in the near
infrared range were calculated based on two dynamic model atmospheres (at
various phases during the pulsation cycle) as well as a grid of hydrostatic
COMARCS models. Equivalent widths of a selection of atomic and molecular lines
were derived in both cases and compared with each other. In the case of the
dynamic models, the equivalent widths of all investigated features vary over
the pulsation cycle. A consistent reproduction of the derived variations with a
set of hydrostatic models is not possible, but several individual phases and
spectral features can be reproduced well with the help of specific hydrostatic
atmospheric models. In addition, we show that the variations in equivalent
width that we found on the basis of the adopted dynamic model atmospheres agree
qualitatively with observational results for the Mira R Cas over its light
cycle. The findings of our modelling form a starting point to deal with the
problem of abundance determination in strongly dynamic AGB stars (i.e.,
long-period variables).Comment: 13 pages, 22 figures, accepted for publication in A&
Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust
By using self-consistent dynamic model atmospheres which simulate
pulsation-enhanced dust-driven winds of AGB stars we studied in detail the
influence of (i) pulsations of the stellar interiors, and (ii) the development
of dusty stellar winds on the spectral appearance of long period variables with
carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude
photometric variability, the dusty envelopes cause pronounced circumstellar
reddening. Based on one selected dynamical model which is representative of
C-type Mira variables with intermediate mass loss rates, we calculated
synthetic spectra and photometry for standard broad-band filters from the
visual to the near-infrared. Our modelling allows to investigate in detail the
substantial effect of circumstellar dust on the resultant photometry. The
pronounced absorption of amorphous carbon dust grains leads to colour indices
which are significantly redder than the corresponding ones based on hydrostatic
dust-free models. Only if we account for this circumstellar reddening we get
synthetic colours that are comparable to observations of evolved AGB stars. The
photometric variations of the dynamical model were compared to observed
lightcurves of the C-type Mira RU_Vir which appears to be quite similar to the
model. We found good agreement concerning the principal behaviour of the
BVRIJHKL lightcurves and also quantitatively fitting details. The analysed
model is able to reproduce the variations of RU_Vir and other Miras in (J-H)
vs. (H-K) diagrams throughout the light cycle. Contrasting the model photometry
with observational data for a variety of galactic C-rich giants in such
colour-colour diagrams proved that the chosen atmospheric model fits well into
a sequence of objects with increasing mass loss rates, i.e., redder colour
indices.Comment: Accepted for publication in A&
Carbon star survey in the Local Group. VII. NGC 3109 a galaxy without a stellar halo
We present a CFH12K wide field survey of the carbon star population in and
around NGC 3109. Carbon stars, the brightest members of the intermediate-age
population, were found nearly exclusively in and near the disk of NGC 3109,
ruling out the existence of an extensive intermediate-age halo like the one
found in NGC 6822. Over 400 carbon stars identified have = -4.71,
confirming the nearly universality of mean magnitude of C star populations in
Local Group galaxies. Star counts over the field reveal that NGC 3109 is a
truncated disk shaped galaxy without an extensive stellar halo. The minor axis
star counts reach the foreground density between 4' and 5', a distance that can
be explained by an inclined disk rather than a spheroidal halo. We calculate a
global C/M ratio of 1.75 +/- 0.20, a value expected for such a metal poor
galaxy.Comment: Accepted in Astronomy and Astrophysic
Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices
We investigate the relationship between the gap between the energy of the
ground state and the first excited state and the decay of correlation functions
in harmonic lattice systems. We prove that in gapped systems, the exponential
decay of correlations follows for both the ground state and thermal states.
Considering the converse direction, we show that an energy gap can follow from
algebraic decay and always does for exponential decay. The underlying lattices
are described as general graphs of not necessarily integer dimension, including
translationally invariant instances of cubic lattices as special cases. Any
local quadratic couplings in position and momentum coordinates are allowed for,
leading to quasi-free (Gaussian) ground states. We make use of methods of
deriving bounds to matrix functions of banded matrices corresponding to local
interactions on general graphs. Finally, we give an explicit entanglement-area
relationship in terms of the energy gap for arbitrary, not necessarily
contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added
Diagramming social practice theory:An interdisciplinary experiment exploring practices as networks
Achieving a transition to a low-carbon energy system is now widely recognised as a key challenge facing humanity. To date, the vast majority of research addressing this challenge has been conducted within the disciplines of science, engineering and economics utilising quantitative and modelling techniques. However, there is growing awareness that meeting energy challenges requires fundamentally socio-technical solutions and that the social sciences have an important role to play. This is an interdisciplinary challenge but, to date, there remain very few explorations of, or reflections on, interdisciplinary energy research in practice. This paper seeks to change that by reporting on an interdisciplinary experiment to build new models of energy demand on the basis of cutting-edge social science understandings. The process encouraged the social scientists to communicate their ideas more simply, whilst allowing engineers to think critically about the embedded assumptions in their models in relation to society and social change. To do this, the paper uses a particular set of theoretical approaches to energy use behaviour known collectively as social practice theory (SPT) - and explores the potential of more quantitative forms of network analysis to provide a formal framework by means of which to diagram and visualize practices. The aim of this is to gain insight into the relationships between the elements of a practice, so increasing the ultimate understanding of how practices operate. Graphs of practice networks are populated based on new empirical data drawn from a survey of different types (or variants) of laundry practice. The resulting practice networks are analysed to reveal characteristics of elements and variants of practice, such as which elements could be considered core to the practice, or how elements between variants overlap, or can be shared. This promises insights into energy intensity, flexibility and the rootedness of practices (i.e. how entrenched/ established they are) and so opens up new questions and possibilities for intervention. The novelty of this approach is that it allows practice data to be represented graphically using a quantitative format without being overly reductive. Its usefulness is that it is readily applied to large datasets, provides the capacity to interpret social practices in new ways, and serves to open up potential links with energy modeling. More broadly, a significant dimension of novelty has been the interdisciplinary approach, radically different to that normally seen in energy research. This paper is relevant to a broad audience of social scientists and engineers interested in integrating social practices with energy engineering
- …
