395 research outputs found
Moving Detectors in Cavities
We consider two-level detectors, coupled to a quantum scalar field, moving
inside cavities. We highlight some pathological resonant effects due to abrupt
boundaries, and decide to describe the cavity by switching smoothly the
interaction by a time-dependent gate-like function. Considering uniformly
accelerated trajectories, we show that some specific choices of non-adiabatic
switching have led to hazardous interpretations about the enhancement of the
Unruh effect in cavities. More specifically, we show that the
emission/absorption ratio takes arbitrary high values according to the emitted
quanta properties and to the transients undergone at the entrance and the exit
of the cavity, {\it independently of the acceleration}. An explicit example is
provided where we show that inertial and uniformly accelerated world-lines can
even lead to the same ``pseudo-temperature''.Comment: 13 pages, 6 figures, version accepted in Phys.Rev.
Uniformly Accelerated Mirrors. Part 2: Quantum Correlations
We study the correlations between the particles emitted by a moving mirror.
To this end, we first analyze , the
two-point function of the stress tensor of the radiation field. In this we
generalize the work undertaken by Carlitz and Willey. To further analyze how
the vacuum correlations on are scattered by the mirror and redistributed
among the produced pairs of particles, we use a more powerful approach based on
the value of which is conditional to the detection of a given
particle on . We apply both methods to the fluxes emitted by a uniformly
accelerated mirror. This case is particularly interesting because of its strong
interferences which lead to a vanishing flux, and because of its divergences
which are due to the infinite blue shift effects associated with the horizons.
Using the conditional value of , we reveal the existence of
correlations between created particles and their partners in a domain where the
mean fluxes and the two-point function vanish. This demonstrates that the
scattering by an accelerated mirror leads to a steady conversion of vacuum
fluctuations into pairs of quanta. Finally, we study the scattering by two
uniformly accelerated mirrors which follow symmetrical trajectories (i.e. which
possess the same horizons). When using the Davies-Fulling model, the Bogoliubov
coefficients encoding pair creation vanish because of perfectly destructive
interferences. When using regularized amplitudes, these interferences are
inevitably lost thereby giving rise to pair creation.Comment: 30 pages, 9 postscript figure
Symptomatic and Asymptomatic Neurological Complications of Infective Endocarditis: Impact on Surgical Management and Prognosis
International audienceObjectives:Symptomatic neurological complications (NC) are a major cause of mortality in infective endocarditis (IE) but the impact of asymptomatic complications is unknown. We aimed to assess the impact of asymptomatic NC (AsNC) on the management and prognosis of IE.Methods: From the database of cases collected for a population-based study on IE, we selected 283 patients with definite left-sided IE who had undergone at least one neuroimaging procedure (cerebral CT scan and/or MRI) performed as part of initial evaluation.Results Among those 283 patients, 100 had symptomatic neurological complications (SNC) prior to the investigation, 35 had an asymptomatic neurological complications (AsNC), and 148 had a normal cerebral imaging (NoNC). The rate of valve surgery was 43% in the 100 patients with SNC, 77% in the 35 with AsNC, and 54% in the 148 with NoNC (p<0.001). In-hospital mortality was 42% in patients with SNC, 8.6% in patients with AsNC, and 16.9% in patients with NoNC (p<0.001). Among the 135 patients with NC, 95 had an indication for valve surgery (71%), which was performed in 70 of them (mortality 20%) and not performed in 25 (mortality 68%). In a multivariate adjusted analysis of the 135 patients with NC, age, renal failure, septic shock, and IE caused by S. aureus were independently associated with in-hospital and 1-year mortality. In addition SNC was an independent predictor of 1-year mortality.Conclusions The presence of NC was associated with a poorer prognosis when symptomatic. Patients with AsNC had the highest rate of valve surgery and the lowest mortality rate, which suggests a protective role of surgery guided by systematic neuroimaging results
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Entanglement Dynamics between Inertial and Non-uniformly Accelerated Detectors
We study the time-dependence of quantum entanglement between two Unruh-DeWitt
detectors, one at rest in a Minkowski frame, the other non-uniformly
accelerated in some specified way. The two detectors each couple to a scalar
quantum field but do not interact directly. The primary challenge in problems
involving non-uniformly accelerated detectors arises from the fact that an
event horizon is absent and the Unruh temperature is ill-defined. By numerical
calculation we demonstrate that the correlators of the accelerated detector in
the weak coupling limit behaves like those of an oscillator in a bath of
time-varying "temperature" proportional to the instantaneous proper
acceleration of the detector, with oscillatory modifications due to
non-adiabatic effects. We find that in this setup the acceleration of the
detector in effect slows down the disentanglement process in Minkowski time due
to the time dilation in that moving detectorComment: 20 pages, 15 figures; References added; More analysis given in
Appendix C; Typos correcte
The challenges of modeling and forecasting the spread of COVID-19
The coronavirus disease 2019 (COVID-19) pandemic has placed epidemic modeling at the forefront of worldwide public policy making. Nonetheless, modeling and forecasting the spread of COVID-19 remains a challenge. Here, we detail three regional-scale models for forecasting and assessing the course of the pandemic. This work demonstrates the utility of parsimonious models for early-time data and provides an accessible framework for generating policy-relevant insights into its course. We show how these models can be connected to each other and to time series data for a particular region. Capable of measuring and forecasting the impacts of social distancing, these models highlight the dangers of relaxing nonpharmaceutical public health interventions in the absence of a vaccine or antiviral therapies
Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children
INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination
Unruh--DeWitt detectors in spherically symmetric dynamical space-times
In the present paper, Unruh--DeWitt detectors are used in order to
investigate the issue of temperature associated with a spherically symmetric
dynamical space-times. Firstly, we review the semi-classical tunneling method,
then we introduce the Unruh--DeWitt detector approach. We show that for the
generic static black hole case and the FRW de Sitter case, making use of
peculiar Kodama trajectories, semiclassical and quantum field theoretic
techniques give the same standard and well known thermal interpretation, with
an associated temperature, corrected by appropriate Tolman factors. For a FRW
space-time interpolating de Sitter space with the Einstein--de Sitter universe
(that is a more realistic situation in the frame of CDM cosmologies),
we show that the detector response splits into a de Sitter contribution plus a
fluctuating term containing no trace of Boltzmann-like factors, but rather
describing the way thermal equilibrium is reached in the late time limit. As a
consequence, and unlike the case of black holes, the identification of the
dynamical surface gravity of a cosmological trapping horizon as an effective
temperature parameter seems lost, at least for our co-moving simplified
detectors. The possibility remains that a detector performing a proper motion
along a Kodama trajectory may register something more, in which case the
horizon surface gravity would be associated more likely to vacuum correlations
than to particle creation.Comment: 19 pages, to appear on IJTP. arXiv admin note: substantial text
overlap with arXiv:1101.525
- …
