618 research outputs found
Temperature-dependent electronic structure and ferromagnetism in the d=oo Hubbard model studied by a modfied perturbation theory
The infinite-dimensional Hubbard model is studied by means of a modified
perturbation theory. The approach reduces to the iterative perturbation theory
for weak coupling. It is exact in the atomic limit and correctly reproduces the
dispersions and the weights of the Hubbard bands in the strong-coupling regime
for arbitrary fillings. Results are presented for the hyper-cubic and an
fcc-type lattice. For the latter we find ferromagnetic solutions. The
filling-dependent Curie temperature is compared with the results of a recent
Quantum Monte Carlo study.Comment: RevTeX, 5 pages, 6 eps figures included, Phys. Rev. B (in press),
Ref. 16 correcte
Ferromagnetism in the large-U Hubbard model
We study the Hubbard model on a hypercubic lattice with regard to the
possibility of itinerant ferromagnetism. The Dynamical Mean Field theory is
used to map the lattice model on an effective local problem, which is treated
with help of the Non Crossing Approximation. By investigating spin dependent
one-particle Green's functions and the magnetic susceptibility, a region with
nonvanishing ferromagnetic polarization is found in the limit . The
-T-phase diagram as well as thermodynamic quantities are discussed. The
dependence of the Curie temperature on the Coulomb interaction and the
competition between ferromagnetism and antiferromagnetism are studied in the
large limit of the Hubbard model.Comment: 4 pages, 5 figures, accepted for publication in Physical Review B,
Rapid Communication
Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers
We report on the first observation of a pronounced re-entrant
superconductivity phenomenon in superconductor/ferromagnetic layered systems.
The results were obtained using a superconductor/ferromagnetic-alloy bilayer of
Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply
with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete
suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the
Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at
d_{CuNi}=13 nm. Our experiments give evidence for the pairing function
oscillations associated with a realization of the quasi-one dimensional
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum
New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition
We have observed two spin density wave (SDW) phases in hole doped metallic
V_{2-y}O_3, one evolves from the other as a function of doping, pressure or
temperature. They differ in their response to an external magnetic field, which
can also induce a transition between them. The phase boundary between these two
states in the temperature-, doping-, and pressure-dependent phase diagram has
been determined by magnetization and magnetotransport measurements. One phase
exists at high doping level and has already been described in the literature.
The second phase is found in a small parameter range close to the boundary to
the antiferromagnetic insulating phase (AFI). The quantum phase transitions
between these states as a function of pressure and doping and the respective
metamagnetic behavior observed in these phases are discussed in the light of
structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR
K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster
Open clusters have been the focus of several exoplanet surveys but only a few
planets have so far been discovered. The \emph{Kepler} spacecraft revealed an
abundance of small planets around small, cool stars, therefore, such cluster
members are prime targets for exoplanet transit searches. Kepler's new mission,
K2, is targeting several open clusters and star-forming regions around the
ecliptic to search for transiting planets around their low-mass constituents.
Here, we report the discovery of the first transiting planet in the
intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint
() dwarf from K2's Campaign 5
with an effective temperature of , approximately
solar metallicity and a radius of . We
detected a transiting planet with a radius of and an orbital period of 10.134 days. We combined photometry,
medium/high-resolution spectroscopy, adaptive optics/speckle imaging and
archival survey images to rule out any false positive detection scenarios,
validate the planet, and further characterize the system. The planet's radius
is very unusual as M-dwarf field stars rarely have Neptune-sized transiting
planets. The comparatively large radius of K2-95b is consistent with the other
recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper
Scorpius), indicating systematic differences in their evolutionary states or
formation. These discoveries from K2 provide a snapshot of planet formation and
evolution in cluster environments and thus make excellent laboratories to test
differences between field-star and cluster planet populations.Comment: 14 pages, 8 figues. Accepted for publication in A
Strong-coupling approach for strongly correlated electron systems
A perturbation theory scheme in terms of electron hopping, which is based on
the Wick theorem for Hubbard operators, is developed. Diagrammatic series
contain single-site vertices connected by hopping lines and it is shown that
for each vertex the problem splits into the subspaces with ``vacuum states''
determined by the diagonal Hubbard operators and only excitations around these
vacuum states are allowed. The rules to construct diagrams are proposed. In the
limit of infinite spatial dimensions the total auxiliary single-site problem
exactly splits into subspaces that allows to build an analytical
thermodynamically consistent approach for a Hubbard model. Some analytical
results are given for the simple approximations when the two-pole
(alloy-analogy solution) and four-pole (Hartree-Fock approximation) structure
for Green's function is obtained. Two poles describe contribution from the
Fermi-liquid component, which is dominant for small electron and hole
concentrations (``overdoped case'' of high-'s), whereas other two describe
contribution from the non-Fermi liquid and are dominant close to half-filling
(``underdoped case'').Comment: 14 pages, revtex, feynmf, 5 EPS figures, two-column PRB style,
published in PR
A novel method for the absolute fluorescence yield measurement by AIRFLY
One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to
measure the absolute fluorescence yield induced by electrons in air to better
than 10% precision. We introduce a new technique for measurement of the
absolute fluorescence yield of the 337 nm line that has the advantage of
reducing the systematic uncertainty due to the detector calibration. The
principle is to compare the measured fluorescence yield to a well known process
- the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test
Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests
in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA
with 14 MeV electrons have also shown that this technique can be applied at
lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid,
Spain, 16 - 20 September 200
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Temperature and Humidity Dependence of Air Fluorescence Yield measured by AIRFLY
The fluorescence detection of ultra high energy cosmic rays requires a
detailed knowledge of the fluorescence light emission from nitrogen molecules
over a wide range of atmospheric parameters, corresponding to altitudes typical
of the cosmic ray shower development in the atmosphere. We have studied the
temperature and humidity dependence of the fluorescence light spectrum excited
by MeV electrons in air. Results for the 313.6 nm, 337.1 nm, 353.7 nm and 391.4
nm bands are reported in this paper. We found that the temperature and humidity
dependence of the quenching process changes the fluorescence yield by a
sizeable amount (up to 20%) and its effect must be included for a precise
estimation of the energy of ultra high energy cosmic rays.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid,
Spain, 16 - 20 September 2007, to appear in Nuclear Instruments and Methods
Dynamical mean-field study of ferromagnetism in the periodic Anderson model
The ferromagnetic phase diagram of the periodic Anderson model is calculated
using dynamical mean-field theory in combination with the modified perturbation
theory. Concentrating on the intermediate valence regime, the phase boundaries
are established as function of the total electron density, the position of the
atomic level and the hybridization strength. The main contribution to the
magnetic moment stems from the f-electrons. The conduction band polarization
is, depending on the system parameters either parallel or antiparallel to the
f-magnetization. By investigating the densities of states, one observes that
the change of sign of the conduction band polarization is closely connected to
the hybridization gap, which is only apparent in the case of almost complete
polarization of the f-electrons. Finite-temperature calculations are also
performed, the Curie temperature as function of electron density and f-level
position are determined. In the intermediate-valence regime, the phase
transitions are found to be of second order.Comment: 12 pages, 11 figures, accepted by Phys. Rev.
- …
