236 research outputs found

    Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus

    Get PDF
    Background During the last years the quantification of immune response under immunological challenges, e.g. parasitation, has been a major focus of research. In this context, the expression of immune response genes in teleost fish has been surveyed for scientific and commercial purposes. Despite the fact that it was shown in teleostei and other taxa that the gene for beta-actin is not the most stably expressed housekeeping gene (HKG), depending on the tissue and experimental treatment, the gene has been us Results To establish a reliable method for the measurement of immune gene expression in Gasterosteus aculeatus, sequences from the now available genome database and an EST library of the same species were used to select oligonucleotide primers for HKG, in order to perform quantitative reverse-transcription (RT) PCR. The expression stability of ten candidate reference genes was evaluated in three different tissues, and in five parasite treatment groups, using the three algorithms BestKeeper, geNorm and N Conclusion As they were the most stably expressed genes in all tissues examined, we suggest using the genes for the L13a ribosomal binding protein and ubiquitin as alternative or additional reference genes in expression analysis in Gasterosteus aculeatus.

    Lufenuron treatment temporarily represses gene expression and affects the SUMO pathway in liver of Atlantic salmon

    Get PDF
    Lufenuron is a benzoylurea insecticide currently in use to combat sea lice infestation in salmon aquaculture in Chile. With pending approval in Norway, the aim of this work was to study the uptake and toxicity of lufenuron in liver tissue of Atlantic salmon. Juvenile salmon weighing 40 g were given a standard 7-day oral dose, and bioaccumulation and transcriptional responses in the liver were examined 1 day after the end-of-treatment (day 8) and after 1 week of elimination (day 14). Bioaccumulation levels of lufenuron were 29 ± 3 mg/kg at day 8 and 14 ± 1 mg/kg at day 14, indicating relatively rapid clearance. However, residues of lufenuron were still present in the liver after 513 days of depuration. The exposure gave a transient inhibition of transcription in the liver at day 8 (2437 significant DEGs, p-adj < .05), followed by a weaker compensatory response at day 14 (169 significant DEGs). Pathways associated with RNA metabolism such as the sumoylation pathway were most strongly affected at day 8, while the apelin pathway was most profoundly affected at day 14. In conclusion, this study shows that lufenuron easily bioaccumulates and that a standard 7-day oral dose induces a transient inhibition of transcription in liver of salmon.publishedVersio

    Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Get PDF
    Methylmercury (MeHg) is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK) cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293), proliferation (HEK293 and ASK), apoptosis (ASK), oxidation of the red-ox probe roGFP (HEK293), and regulation of selected toxicological and metabolic transcriptional markers (ASK). DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA) or by reducing MeHg uptake (DHA). However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg

    Metal Bioavailability in the Sava River Water

    Get PDF
    Metals present one of the major contamination problems for freshwater systems, such as the Sava River, due to their high toxicity, persistence, and tendency to accumulate in sediment and living organisms. The comprehensive assessment of the metal bioavailability in the Sava River encompassed the analyses of dissolved and DGT-labile metal species of nine metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the river water, as well as the evaluation of the accumulation of five metals (Cd, Cu, Fe, Mn, and Zn) in three organs (liver, gills, and gastrointestinal tissue) of the bioindicator organism, fish species European chub (Squalius cephalus L.).This survey was conducted mainly during the year 2006, in two sampling campaigns, in April/May and September, as periods representative for chub spawning and post-spawning. Additionally, metal concentrations were determined in the intestinal parasites acanthocephalans, which are known for their high affinity for metal accumulation. Metallothionein concentrations were also determined in three chub organs, as a commonly applied biomarker of metal exposure. Based on the metal concentrations in the river water, the Sava River was defined as weakly contaminated and mainly comparable with unpolluted rivers, which enabled the analyses of physiological variability of metal and metallothionein concentrations in the chub organs, as well as the establishment of their constitutive levels

    Pharmacokinetics and transcriptional effects of the anti-salmon lice drug emamectin benzoate in Atlantic salmon (Salmo salar L.)

    Get PDF
    Background Emamectin benzoate (EB) is a dominating pharmaceutical drug used for the treatment and control of infections by sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar L). Fish with an initial mean weight of 132 g were experimentally medicated by a standard seven-day EB treatment, and the concentrations of drug in liver, muscle and skin were examined. To investigate how EB affects Atlantic salmon transcription in liver, tissues were assessed by microarray and qPCR at 7, 14 and 35 days after the initiation of medication. Results The pharmacokinetic examination revealed highest EB concentrations in all three tissues at day 14, seven days after the end of the medication period. Only modest effects were seen on the transcriptional levels in liver, with small fold-change alterations in transcription throughout the experimental period. Gene set enrichment analysis (GSEA) indicated that EB treatment induced oxidative stress at day 7 and inflammation at day 14. The qPCR examinations showed that medication by EB significantly increased the transcription of both HSP70 and glutathione-S-transferase (GST) in liver during a period of 35 days, compared to un-treated fish, possibly via activation of enzymes involved in phase II conjugation of metabolism in the liver. Conclusion This study has shown that a standard seven-day EB treatment has only a modest effect on the transcription of genes in liver of Atlantic salmon. Based on GSEA, the medication seems to have produced a temporary oxidative stress response that might have affected protein stability and folding, followed by a secondary inflammatory response.publishedVersio

    Enterotoxigenic Escherichia coli and Vibrio cholerae Diarrhea, Bangladesh, 2004

    Get PDF
    Flooding in Dhaka in July 2004 caused epidemics of diarrhea. Enterotoxigenic Escherichia coli (ETEC) was almost as prevalent as Vibrio cholerae O1 in diarrheal stools. ETEC that produced heat-stable enterotoxin alone was most prevalent, and 78% of strains had colonization factors. Like V. cholerae O1, ETEC can cause epidemic diarrhea

    Transcriptomic analyses of intestinal gene expression of juvenile Atlantic cod (Gadus morhua) fed diets with Camelina oil as replacement for fish oil

    Get PDF
    For aquaculture of marine species to continue to expand, dietary fish oil (FO) must be replaced with more sustainable vegetable oil (VO) alternatives. Most VO are rich in n-6 polyunsaturated fatty acids (PUFA) and few are rich in n-3 PUFA but Camelina oil (CO) is unique in that, besides high 18:3n-3 and n-3/n-6 PUFA ratio, it also contains substantial long-chain monoenes, commonly found in FO. Cod (initial weight ~1.4 g) were fed for 12 weeks diets in which FO was replaced with CO. Growth performance, feed efficiency and biometric indices were not affected but lipid levels in liver and intestine tended to increase and those of flesh, decrease, with increasing dietary CO although only significantly for intestine. Reflecting diet, tissue n-3 long-chain PUFA levels decreased whereas 18:3n-3 and 18:2n-6 increased with inclusion of dietary CO. Dietary replacement of FO by CO did not induce major metabolic changes in intestine, but affected genes with potential to alter cellular proliferation and death as well as change structural properties of intestinal muscle. Although the biological effects of these changes are unclear, given the important role of intestine in nutrient absorption and health, further attention should be given to this organ in future

    Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l.) during temperature stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One important physiological response to environmental stress in animals is change in gene expression. To obtain reliable data from gene expression studies using RT-qPCR it is important to evaluate a set of possible reference genes as normalizers for expression. The expression of these candidate genes should be analyzed in the relevant tissues during normal and stressed situations. To find suitable reference genes it was crucial that the genes were stably expressed also during a situation of physiological stress. For poikilotermic animals like cod, changes in temperature are normal, but if the changes are faster than physiological compensation, the animals respond with typical stress responses. It has previously been shown that Atlantic cod show stress responses when elevation of water temperature is faster than 1 degree/day, for this reason we chose hyperthermia as stress agent for this experiment.</p> <p>Findings</p> <p>We here describe the expression of eight candidate reference genes from Atlantic cod (<it>Gadus morhua l</it>.) and their stability during thermal stress (temperature elevation of one degree C/day for 5 days). The genes investigated were: Eukaryotic elongation factor 1 alpha, <it>ef1a</it>; 18s ribosomal RNA; <it>18s</it>, Ubiquitin conjugate protein; <it>ubiq</it>, cytoskeletal beta-actin; <it>actb</it>, major histcompatibility complex I; MHC-I light chain, beta-2 -microglobulin; <it>b2m</it>, cytoskeletal alpha-tubulin; <it>tba1c</it>, acidic ribosomal phosphoprotein; <it>rplp1</it>, glucose-6-phosphate dehydrogenase; <it>g6pd</it>. Their expression were analyzed in 6 tissues (liver, head kidney, intestine, spleen, heart and gills) from cods exposed to elevated temperature and compared to a control group. Although there were variations between tissues with respect to reference gene stability, four transcripts were more consistent than the others: <it>ubiq</it>, <it>ef1a</it>, <it>18s </it>and <it>rplp1</it>. We therefore used these to analyze the expression of stress related genes (heat shock proteins) induced during hyperthermia. We found that both transcripts were significantly upregulated in several tissues in fish exposed to increased temperature.</p> <p>Conclusion</p> <p>This is the first study comparing reference genes for RT-qPCR analyses of expression during hyperthermia in Atlantic cod. <it>ef1a, 18s, rplp1 </it>and <it>ubiq </it>transcripts were found to be well suited as reference genes during these experimental conditions.</p

    Molecular characterization of Vibrio cholerae outbreak strains with altered El Tor biotype from southern India

    Get PDF
    Forty-four Vibrio cholerae isolates collected over a 7-month period in Chennai, India in 2004 were characterized for gene traits, antimicrobial susceptibility and genomic fingerprints. All 44 isolates were identified as O1 El Tor Ogawa, positive for various toxigenic and pathogenic genes viz. ace, ctxB, hlyA, ompU, ompW, rfbO1, rtx, tcpA, toxR and zot. Nucleotide sequencing revealed the presence of cholera toxin B of classical biotype in all the El Tor isolates, suggesting infection of isolates by classical CTXΦ. Antibiogram analysis showed a broad-spectrum antibiotic resistance that was also confirmed by the presence of resistant genes in the genomes. All isolates contained a class 1 integron and an SXT constin. However, isolates were sensitive to chloramphenicol and tested negative for the chloramphenicol resistant gene suggesting a deletion in SXT constin. Fingerprinting analysis of isolates by ERIC- and Box PCR revealed similar DNA patterns indicating the clonal dissemination of a single predominant V. cholerae O1 strain throughout the 2004 outbreak in Chennai

    Heart and Skeletal Muscle Inflammation of Farmed Salmon Is Associated with Infection with a Novel Reovirus

    Get PDF
    Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch's postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations
    corecore