634 research outputs found
Elementary structural building blocks encountered in silicon surface reconstructions
Driven by the reduction of dangling bonds and the minimization of surface
stress, reconstruction of silicon surfaces leads to a striking diversity of
outcomes. Despite this variety even very elaborate structures are generally
comprised of a small number of structural building blocks. We here identify
important elementary building blocks and discuss their integration into the
structural models as well as their impact on the electronic structure of the
surface
A new structural model for the Si(331)-(12x1) reconstruction
A new structural model for the Si(331)-(12x1) reconstruction is proposed.
Based on scanning tunneling microscopy images of unprecedented resolution,
low-energy electron diffraction data, and first-principles total-energy
calculations, we demonstrate that the reconstructed Si(331) surface shares the
same elementary building blocks as the Si(110)-(16x2) surface, establishing the
pentamer as a universal building block for complex silicon surface
reconstructions
Ab initio study of reflectance anisotropy spectra of a sub-monolayer oxidized Si(100) surface
The effects of oxygen adsorption on the reflectance anisotropy spectrum (RAS)
of reconstructed Si(100):O surfaces at sub-monolayer coverage (first stages of
oxidation) have been studied by an ab initio DFT-LDA scheme within a
plane-wave, norm-conserving pseudopotential approach. Dangling bonds and the
main features of the characteristic RAS of the clean Si(100) surface are mostly
preserved after oxidation of 50% of the surface dimers, with some visible
changes: a small red shift of the first peak, and the appearance of a distinct
spectral structure at about 1.5 eV. The electronic transitions involved in the
latter have been analyzed through state-by-state and layer-by-layer
decompositions of the RAS. We suggest that new interplay between present
theoretical results and reflectance anisotropy spectroscopy experiments could
lead to further clarification of structural and kinetic details of the Si(100)
oxidation process in the sub-monolayer range.Comment: 21 pages, 8 figures. To be published in Physical Rev.
Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation
The connection between many-body theory (MBPT)--in perturbative and
non-perturbative form--and quantum-electrodynamics (QED) is reviewed for
systems of two fermions in an external field. The treatment is mainly based
upon the recently developed covariant-evolution-operator method for QED
calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a
structure quite akin to that of many-body perturbation theory. At the same time
this procedure is closely connected to the S-matrix and the Green's-function
formalisms and can therefore serve as a bridge between various approaches. It
is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to
a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A
Bloch equation in commutator form that can be used for an "extended" or
quasi-degenerate model space is derived. It has the same relation to the BS
equation as has the standard Bloch equation to the ordinary Schroedinger
equation and can be used to generate a perturbation expansion compatible with
the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation
Within the Tamm-Dancoff approximation ab initio approaches describe excitons
as packets of electron-hole pairs propagating only forward in time. However, we
show that in nanoscale materials excitons and plasmons hybridize, creating
exciton--plasmon states where the electron-hole pairs oscillate back and forth
in time. Then, as exemplified by the trans-azobenzene molecule and carbon
nanotubes, the Tamm-Dancoff approximation yields errors as large as the
accuracy claimed in ab initio calculations. Instead, we propose a general and
efficient approach that avoids the Tamm--Dancoff approximation, and correctly
describes excitons, plasmons and exciton-plasmon states
Correct quantum chemistry in a minimal basis from effective Hamiltonians
We describe how to create ab-initio effective Hamiltonians that qualitatively
describe correct chemistry even when used with a minimal basis. The
Hamiltonians are obtained by folding correlation down from a large parent basis
into a small, or minimal, target basis, using the machinery of canonical
transformations. We demonstrate the quality of these effective Hamiltonians to
correctly capture a wide range of excited states in water, nitrogen, and
ethylene, and to describe ground and excited state bond-breaking in nitrogen
and the chromium dimer, all in small or minimal basis sets
Study of a Nonlocal Density scheme for electronic--structure calculations
An exchange-correlation energy functional beyond the local density
approximation, based on the exchange-correlation kernel of the homogeneous
electron gas and originally introduced by Kohn and Sham, is considered for
electronic structure calculations of semiconductors and atoms. Calculations are
carried out for diamond, silicon, silicon carbide and gallium arsenide. The
lattice constants and gaps show a small improvement with respect to the LDA
results.
However, the corresponding corrections to the total energy of the isolated
atoms are not large enough to yield a substantial improvement for the cohesive
energy of solids, which remains hence overestimated as in the LDA.Comment: 4 postscript figure
- …
